[yt-users] Problem with gradient of a derived field
José Utreras
jutreras at das.uchile.cl
Wed May 18 11:17:14 PDT 2016
Hi everyone,
I'm having the following problem: I want to calculate the gradient field of
the angular velocity which I have defined as follows:
>def _Omega(field,data):
> if data.has_field_parameter("bulk_velocity"):
> bv =
data.get_field_parameter("bulk_velocity").in_units("cm/s")
> else:
> bv = data.ds.arr(np.zeros(3), "cm/s")
> xv = data["gas","velocity_x"] - bv[0]
> yv = data["gas","velocity_y"] - bv[1]
> center = data.get_field_parameter('center')
> x_hat = data["x"] - center[0]
> y_hat = data["y"] - center[1]
> r = np.sqrt(x_hat*x_hat+y_hat*y_hat)
> x_hat /= r**2
> y_hat /= r**2
>
> return np.sqrt((xv*y_hat-yv*x_hat)**2)
>yt.add_field("Omega", function=_Omega,take_log=False,
units=r"1/yr",validators=[ValidateParameter('bulk_velocity')])
This is the profile I have got using the SlicePlot tool:
https://drive.google.com/file/d/0B43CkTTj8OeOcy16TkFaZlBhRE0/view?usp=sharing
So, it is a function of radius. The density is also a function of radius.
The problem is that if I use
>grad_fields = ds.add_gradient_fields(("gas","Omega"))
>slice = yt.SlicePlot(ds, 'z', "Omega_gradient_x")
I get this
https://drive.google.com/file/d/0B43CkTTj8OeOLUxGVUJSQ253TE0/view?usp=sharing
the sign should only change across x=0. I did the same for the density
field getting the correct behaviour.
I've also tried to define the gradient field
>def _vorticity_2(field, data):
> f = (data[ftype, "Omega"][sl_right,sl_center,sl_center] -
> data[ftype, "Omega"][sl_left,sl_center,sl_center]) \
> / (div_fac*just_one(data["index", "dx"]))
>
> new_field = data.ds.arr(np.zeros_like(data[ftype, "velocity_z"],
> dtype=np.float64),
> f.units)
> new_field[sl_center, sl_center, sl_center] = f
> return new_field
But I got the same results.
If I'm doing something wrong please let me know.
Cheers!
Jose Utreras
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.spacepope.org/pipermail/yt-users-spacepope.org/attachments/20160518/fdd5b2b2/attachment.htm>
More information about the yt-users
mailing list