[yt-svn] commit/yt: 6 new changesets

Bitbucket commits-noreply at bitbucket.org
Wed Oct 24 04:45:22 PDT 2012


6 new commits in yt:


https://bitbucket.org/yt_analysis/yt/changeset/814a93ee3207/
changeset:   814a93ee3207
branch:      yt
user:        scopatz
date:        2012-10-23 21:33:27
summary:     added ray trace stuff.
affected #:  4 files

diff -r 76ab79a5ae9af5a5b062b49907bf85fc95e6bf0c -r 814a93ee320766d02a677b07a441cbc3dcc660a5 yt/data_objects/tests/test_profiles.py
--- /dev/null
+++ b/yt/data_objects/tests/test_profiles.py
@@ -0,0 +1,74 @@
+from yt.testing import *
+from yt.data_objects.profiles import \
+    BinnedProfile1D, BinnedProfile2D, BinnedProfile3D
+
+_fields = ("Density", "Temperature", "Dinosaurs", "Tribbles")
+
+def test_profiles():
+    pf = fake_random_pf(64, nprocs = 8, fields = _fields)
+    nv = pf.domain_dimensions.prod()
+    dd = pf.h.all_data()
+    (rmi, rma), (tmi, tma), (dmi, dma) = dd.quantities["Extrema"](
+        ["Density", "Temperature", "Dinosaurs"])
+    rt, tt, dt = dd.quantities["TotalQuantity"](
+        ["Density", "Temperature", "Dinosaurs"])
+    # First we look at the 
+    for nb in [8, 16, 32, 64]:
+        for lr in [True, False]:
+            # We log all the fields or don't log 'em all.  No need to do them
+            # individually.
+            for lf in [True, False]: 
+                # We have the min and the max, but to avoid cutting them off
+                # since we aren't doing end-collect, we cut a bit off the edges
+                for ec, e1, e2 in [(False, 0.9, 1.1), (True, 1.0, 1.0)]:
+                    p1d = BinnedProfile1D(dd, 
+                        nb, "Density", rmi*e1, rma*e2, lf,
+                        lr, end_collect=ec)
+                    p1d.add_fields(["Ones", "Temperature"], weight=None)
+                    yield assert_equal, p1d["Ones"].sum(), nv
+                    yield assert_rel_equal, tt, p1d["Temperature"].sum(), 7
+
+                    p2d = BinnedProfile2D(dd, 
+                        nb, "Density", rmi*e1, rma*e2, lf,
+                        nb, "Temperature", tmi*e1, tma*e2, lf,
+                        lr, end_collect=ec)
+                    p2d.add_fields(["Ones", "Temperature"], weight=None)
+                    yield assert_equal, p2d["Ones"].sum(), nv
+                    yield assert_rel_equal, tt, p2d["Temperature"].sum(), 7
+
+                    p3d = BinnedProfile3D(dd, 
+                        nb, "Density", rmi*e1, rma*e2, lf,
+                        nb, "Temperature", tmi*e1, tma*e2, lf,
+                        nb, "Dinosaurs", dmi*e1, dma*e2, lf,
+                        lr, end_collect=ec)
+                    p3d.add_fields(["Ones", "Temperature"], weight=None)
+                    yield assert_equal, p3d["Ones"].sum(), nv
+                    yield assert_rel_equal, tt, p3d["Temperature"].sum(), 7
+
+            p1d = BinnedProfile1D(dd, nb, "x", 0.0, 1.0, log_space=False)
+            p1d.add_fields("Ones", weight=None)
+            av = nv / nb
+            yield assert_equal, p1d["Ones"][:-1], np.ones(nb)*av
+            # We re-bin ones with a weight now
+            p1d.add_fields(["Ones"], weight="Temperature")
+            yield assert_equal, p1d["Ones"][:-1], np.ones(nb)
+
+            p2d = BinnedProfile2D(dd, nb, "x", 0.0, 1.0, False,
+                                      nb, "y", 0.0, 1.0, False)
+            p2d.add_fields("Ones", weight=None)
+            av = nv / nb**2
+            yield assert_equal, p2d["Ones"][:-1,:-1], np.ones((nb, nb))*av
+            # We re-bin ones with a weight now
+            p2d.add_fields(["Ones"], weight="Temperature")
+            yield assert_equal, p2d["Ones"][:-1,:-1], np.ones((nb, nb))
+
+            p3d = BinnedProfile3D(dd, nb, "x", 0.0, 1.0, False,
+                                      nb, "y", 0.0, 1.0, False,
+                                      nb, "z", 0.0, 1.0, False)
+            p3d.add_fields("Ones", weight=None)
+            av = nv / nb**3
+            yield assert_equal, p3d["Ones"][:-1,:-1,:-1], np.ones((nb, nb, nb))*av
+            # We re-bin ones with a weight now
+            p3d.add_fields(["Ones"], weight="Temperature")
+            yield assert_equal, p3d["Ones"][:-1,:-1,:-1], np.ones((nb,nb,nb))
+


diff -r 76ab79a5ae9af5a5b062b49907bf85fc95e6bf0c -r 814a93ee320766d02a677b07a441cbc3dcc660a5 yt/data_objects/tests/test_projection.py
--- /dev/null
+++ b/yt/data_objects/tests/test_projection.py
@@ -0,0 +1,35 @@
+from yt.testing import *
+from yt.data_objects.profiles import \
+    BinnedProfile1D, BinnedProfile2D, BinnedProfile3D
+
+def test_projection():
+    for nprocs in [8, 1]:
+        # We want to test both 1 proc and 8 procs, to make sure that
+        # parallelism isn't broken
+        pf = fake_random_pf(64, nprocs = 1)
+        dims = pf.domain_dimensions
+        xn, yn, zn = pf.domain_dimensions
+        xi, yi, zi = pf.domain_left_edge + 1.0/(pf.domain_dimensions * 2)
+        xf, yf, zf = pf.domain_right_edge - 1.0/(pf.domain_dimensions * 2)
+        dd = pf.h.all_data()
+        rho_tot = dd.quantities["TotalQuantity"]("Density")[0]
+        coords = np.mgrid[xi:xf:xn*1j, yi:yf:yn*1j, zi:zf:zn*1j]
+        uc = [np.unique(c) for c in coords]
+        # Some simple projection tests with single grids
+        for ax, an in enumerate("xyz"):
+            xax = x_dict[ax]
+            yax = y_dict[ax]
+            for wf in ["Density", None]:
+                proj = pf.h.proj(ax, ["Ones", "Density"], weight_field = wf)
+                yield assert_equal, proj["Ones"].sum(), proj["Ones"].size
+                yield assert_equal, proj["Ones"].min(), 1.0
+                yield assert_equal, proj["Ones"].max(), 1.0
+                yield assert_equal, np.unique(proj["px"]), uc[xax]
+                yield assert_equal, np.unique(proj["py"]), uc[yax]
+                yield assert_equal, np.unique(proj["pdx"]), 1.0/(dims[xax]*2.0)
+                yield assert_equal, np.unique(proj["pdy"]), 1.0/(dims[yax]*2.0)
+            # wf == None
+            yield assert_equal, wf, None
+            v1 = proj["Density"].sum()
+            v2 = (dd["Density"] * dd["d%s" % an]).sum()
+            yield assert_rel_equal, v1, v2, 10


diff -r 76ab79a5ae9af5a5b062b49907bf85fc95e6bf0c -r 814a93ee320766d02a677b07a441cbc3dcc660a5 yt/testing.py
--- a/yt/testing.py
+++ b/yt/testing.py
@@ -24,7 +24,10 @@
 
 import numpy as np
 from yt.funcs import *
-from numpy.testing import assert_array_equal
+from numpy.testing import assert_array_equal, assert_equal, assert_almost_equal
+
+def assert_rel_equal(a1, a2, decimels):
+    return assert_almost_equal(a1/a2, 1.0, decimels)
 
 def amrspace(extent, levels=7, cells=8):
     """Creates two numpy arrays representing the left and right bounds of 
@@ -127,7 +130,8 @@
 
     return left, right, level
 
-def fake_random_pf(ndims, peak_value = 1.0, fields = ("Density",), negative = False):
+def fake_random_pf(ndims, peak_value = 1.0, fields = ("Density",),
+                   negative = False, nprocs = 1):
     from yt.frontends.stream.api import load_uniform_grid
     if not iterable(ndims):
         ndims = [ndims, ndims, ndims]
@@ -139,5 +143,5 @@
         offset = 0.0
     data = dict((field, (np.random.random(ndims) - offset) * peak_value)
                  for field in fields)
-    ug = load_uniform_grid(data, ndims, 1.0)
+    ug = load_uniform_grid(data, ndims, 1.0, nprocs = nprocs)
     return ug


diff -r 76ab79a5ae9af5a5b062b49907bf85fc95e6bf0c -r 814a93ee320766d02a677b07a441cbc3dcc660a5 yt/visualization/plot_modifications.py
--- a/yt/visualization/plot_modifications.py
+++ b/yt/visualization/plot_modifications.py
@@ -7,6 +7,8 @@
 Affiliation: UC Berkeley
 Author: Stephen Skory <s at skory.us>
 Affiliation: UC San Diego
+Author: Anthony Scopatz <scopatz at gmail.com>
+Affiliation: The University of Chicago
 Homepage: http://yt-project.org/
 License:
   Copyright (C) 2008-2011 Matthew Turk, JS Oishi, Stephen Skory.  All Rights Reserved.
@@ -1124,3 +1126,152 @@
     def __call__(self,plot):
         plot._axes.set_title(self.title)
 
+class FlashRayDataCallback(PlotCallback):
+    _type_name = "flash_ray_data"
+    def __init__(self, cmap_name='bone', sample=None):
+        """ 
+        annotate_flash_ray_data(cmap_name='bone', sample=None)
+
+        Adds ray trace data to the plot.  *cmap_name* is the name of the color map 
+        ('bone', 'jet', 'hot', etc).  *sample* dictates the amount of down sampling 
+        to do to prevent all of the rays from being  plotted.  This may be None 
+        (plot all rays, default), an integer (step size), or a slice object.
+        """
+        self.cmap_name = cmap_name
+        self.sample = sample if isinstance(sample, slice) else slice(None, None, sample)
+
+    def __call__(self, plot):
+        ray_data = plot.data.pf._handle["RayData"][:]
+        idx = ray_data[:,0].argsort(kind="mergesort")
+        ray_data = ray_data[idx]
+
+        tags = ray_data[:,0]
+        coords = ray_data[:,1:3]
+        power = ray_data[:,4]
+        power /= power.max()
+        cx, cy = self.convert_to_plot(plot, coords.T)
+        coords[:,0], coords[:,1] = cx, cy
+        splitidx = np.argwhere(0 < (tags[1:] - tags[:-1])) + 1
+        coords = np.split(coords, splitidx.flat)[self.sample]
+        power = np.split(power, splitidx.flat)[self.sample]
+        cmap = matplotlib.cm.get_cmap(self.cmap_name)
+
+        plot._axes.hold(True)
+        colors = [cmap(p.max()) for p in power]
+        lc = matplotlib.collections.LineCollection(coords, colors=colors)
+        plot._axes.add_collection(lc)
+        plot._axes.hold(False)
+
+
+class TimestampCallback(PlotCallback):
+    _type_name = "timestamp"
+    _time_conv = {
+          'as': 1e-18,
+          'attosec': 1e-18,
+          'attosecond': 1e-18,
+          'attoseconds': 1e-18,
+          'fs': 1e-15,
+          'femtosec': 1e-15,
+          'femtosecond': 1e-15,
+          'femtoseconds': 1e-15,
+          'ps': 1e-12,
+          'picosec': 1e-12,
+          'picosecond': 1e-12,
+          'picoseconds': 1e-12,
+          'ns': 1e-9,
+          'nanosec': 1e-9,
+          'nanosecond':1e-9,
+          'nanoseconds' : 1e-9,
+          'us': 1e-6,
+          'microsec': 1e-6,
+          'microsecond': 1e-6,
+          'microseconds': 1e-6,
+          'ms': 1e-3,
+          'millisec': 1e-3,
+          'millisecond': 1e-3,
+          'milliseconds': 1e-3,
+          's': 1.0,
+          'sec': 1.0,
+          'second':1.0,
+          'seconds': 1.0,
+          'm': 60.0,
+          'min': 60.0,
+          'minute': 60.0,
+          'minutes': 60.0,
+          'h': 3600.0,
+          'hour': 3600.0,
+          'hours': 3600.0,
+          'd': 86400.0,
+          'day': 86400.0,
+          'days': 86400.0,
+          'y': 86400.0*365.25,
+          'year': 86400.0*365.25,
+          'years': 86400.0*365.25,
+          'ev': 1e-9 * 7.6e-8 / 6.03,
+          'kev': 1e-12 * 7.6e-8 / 6.03,
+          'mev': 1e-15 * 7.6e-8 / 6.03,
+          }
+
+    def __init__(self, x, y, units=None, format="{time:.3G} {units}", **kwargs):
+        """ 
+        annotate_timestamp(x, y, units=None, format="{time:.3G} {units}", **kwargs)
+
+        Adds the current time to the plot at point given by *x* and *y*.  If *units* 
+        is given ('s', 'ms', 'ns', etc), it will covert the time to this basis.  If 
+        *units* is None, it will attempt to figure out the correct value by which to 
+        scale.  The *format* keyword is a template string that will be evaluated and 
+        displayed on the plot.  All other *kwargs* will be passed to the text() 
+        method on the plot axes.  See matplotlib's text() functions for more 
+        information.
+        """
+        self.x = x
+        self.y = y
+        self.format = format
+        self.units = units
+        self.kwargs = {'color': 'w'}
+        self.kwargs.update(kwargs)
+
+    def __call__(self, plot):
+        if self.units is None:
+            t = plot.data.pf.current_time
+            scale_keys = ['as', 'fs', 'ps', 'ns', 'us', 'ms', 's']
+            self.units = 's'
+            for k in scale_keys:
+                if t < self._time_conv[k]:
+                    break
+                self.units = k
+        t = plot.data.pf.current_time / self._time_conv[self.units.lower()]
+        if self.units == 'us':
+            self.units = '$\\mu s$'
+        s = self.format.format(time=t, units=self.units)
+        plot._axes.hold(True)
+        plot._axes.text(self.x, self.y, s, **self.kwargs)
+        plot._axes.hold(False)
+
+
+class MaterialBoundaryCallback(ContourCallback):
+    _type_name = "material_boundary"
+    def __init__(self, field='targ', ncont=1, factor=4, clim=(0.9, 1.0), **kwargs):
+        """ 
+        annotate_material_boundary(self, field='targ', ncont=1, factor=4, 
+                                   clim=(0.9, 1.0), **kwargs):
+
+        Add the limiting contours of *field* to the plot.  Nominally, *field* is 
+        the target material but may be any other field present in the hierarchy.
+        The number of contours generated is given by *ncount*, *factor* governs 
+        the number of points used in the interpolation, and *clim* gives the 
+        (upper, lower) limits for contouring.  For this to truly be the boundary
+        *clim* should be close to the edge.  For example the default is (0.9, 1.0)
+        for 'targ' which is defined on the range [0.0, 1.0].  All other *kwargs* 
+        will be passed to the contour() method on the plot axes.  See matplotlib
+        for more information.
+        """
+        plot_args = {'colors': 'w'}
+        plot_args.update(kwargs)
+        super(MaterialBoundaryCallback, self).__init__(field=field, ncont=ncont,
+                                                       factor=factor, clim=clim,
+                                                       plot_args=plot_args)
+
+    def __call__(self, plot):
+        super(MaterialBoundaryCallback, self).__call__(plot)
+



https://bitbucket.org/yt_analysis/yt/changeset/df3c48e34cc9/
changeset:   df3c48e34cc9
branch:      yt
user:        scopatz
date:        2012-10-23 21:35:34
summary:     merge commit
affected #:  36 files

diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 MANIFEST.in
--- a/MANIFEST.in
+++ b/MANIFEST.in
@@ -1,3 +1,3 @@
-include distribute_setup.py
+include distribute_setup.py README* CREDITS FUNDING LICENSE.txt
 recursive-include yt/gui/reason/html *.html *.png *.ico *.js
-recursive-include yt *.pyx *.pxd *.hh *.h README* 
+recursive-include yt *.pyx *.pxd *.hh *.h README*


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 nose.cfg
--- /dev/null
+++ b/nose.cfg
@@ -0,0 +1,4 @@
+[nosetests]
+detailed-errors=1
+where=yt
+exclude=answer_testing


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 setup.cfg
--- a/setup.cfg
+++ b/setup.cfg
@@ -1,3 +1,9 @@
 [egg_info]
 #tag_build = .dev
 #tag_svn_revision = 1
+
+[nosetests]
+detailed-errors=1
+where=yt
+exclude=answer_testing
+with-xunit=1


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/analysis_modules/halo_finding/parallel_hop/parallel_hop_interface.py
--- a/yt/analysis_modules/halo_finding/parallel_hop/parallel_hop_interface.py
+++ b/yt/analysis_modules/halo_finding/parallel_hop/parallel_hop_interface.py
@@ -31,7 +31,7 @@
 from yt.funcs import *
 from yt.utilities.performance_counters import yt_counters, time_function
 try:
-    from yt.utilities.kdtree import \
+    from yt.utilities.kdtree.api import \
         chainHOP_tags_dens, \
         create_tree, fKD, find_nn_nearest_neighbors, \
         free_tree, find_chunk_nearest_neighbors


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/analysis_modules/halo_profiler/multi_halo_profiler.py
--- a/yt/analysis_modules/halo_profiler/multi_halo_profiler.py
+++ b/yt/analysis_modules/halo_profiler/multi_halo_profiler.py
@@ -606,6 +606,7 @@
 
         if newProfile:
             mylog.info("Writing halo %d" % halo['id'])
+            if os.path.exists(filename): os.remove(filename)
             if filename.endswith('.h5'):
                 profile.write_out_h5(filename)
             else:
@@ -717,7 +718,9 @@
             Default=True.
         njobs : int
             The number of jobs over which to split the projections.  Set
-            to -1 so that each halo is done by a single processor.
+            to -1 so that each halo is done by a single processor.  Halo 
+            projections do not currently work in parallel, so this must 
+            be set to -1.
             Default: -1.
         dynamic : bool
             If True, distribute halos using a task queue.  If False,
@@ -731,6 +734,12 @@
 
         """
 
+        # Halo projections cannot run in parallel because they are done by 
+        # giving a data source to the projection object.
+        if njobs > 0:
+            mylog.warn("Halo projections cannot use more than one processor per halo, setting njobs to -1.")
+            njobs = -1
+        
         # Get list of halos for projecting.
         if halo_list == 'filtered':
             halo_projection_list = self.filtered_halos


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/analysis_modules/two_point_functions/two_point_functions.py
--- a/yt/analysis_modules/two_point_functions/two_point_functions.py
+++ b/yt/analysis_modules/two_point_functions/two_point_functions.py
@@ -30,7 +30,7 @@
 from yt.utilities.parallel_tools.parallel_analysis_interface import ParallelAnalysisInterface, parallel_blocking_call, parallel_root_only
 
 try:
-    from yt.utilities.kdtree import *
+    from yt.utilities.kdtree.api import *
 except ImportError:
     mylog.debug("The Fortran kD-Tree did not import correctly.")
 


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/config.py
--- a/yt/config.py
+++ b/yt/config.py
@@ -38,6 +38,7 @@
     inline = 'False',
     numthreads = '-1',
     __withinreason = 'False',
+    __withintesting = 'False',
     __parallel = 'False',
     __global_parallel_rank = '0',
     __global_parallel_size = '1',


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/data_containers.py
--- a/yt/data_objects/data_containers.py
+++ b/yt/data_objects/data_containers.py
@@ -237,6 +237,7 @@
     def __set_default_field_parameters(self):
         self.set_field_parameter("center",np.zeros(3,dtype='float64'))
         self.set_field_parameter("bulk_velocity",np.zeros(3,dtype='float64'))
+        self.set_field_parameter("normal",np.array([0,0,1],dtype='float64'))
 
     def _set_center(self, center):
         if center is None:
@@ -3658,7 +3659,7 @@
 class AMRCoveringGridBase(AMR3DData):
     _spatial = True
     _type_name = "covering_grid"
-    _con_args = ('level', 'left_edge', 'right_edge', 'ActiveDimensions')
+    _con_args = ('level', 'left_edge', 'ActiveDimensions')
     def __init__(self, level, left_edge, dims, fields = None,
                  pf = None, num_ghost_zones = 0, use_pbar = True, **kwargs):
         """A 3D region with all data extracted to a single, specified
@@ -3685,8 +3686,9 @@
                            fields=fields, pf=pf, **kwargs)
         self.left_edge = np.array(left_edge)
         self.level = level
-        self.dds = self.pf.h.select_grids(self.level)[0].dds.copy()
-        self.ActiveDimensions = np.array(dims,dtype='int32')
+        rdx = self.pf.domain_dimensions*self.pf.refine_by**level
+        self.dds = self.pf.domain_width/rdx.astype("float64")
+        self.ActiveDimensions = np.array(dims, dtype='int32')
         self.right_edge = self.left_edge + self.ActiveDimensions*self.dds
         self._num_ghost_zones = num_ghost_zones
         self._use_pbar = use_pbar


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/derived_quantities.py
--- a/yt/data_objects/derived_quantities.py
+++ b/yt/data_objects/derived_quantities.py
@@ -598,16 +598,16 @@
                     continue
             else:
                 nz_filter = None
-            mins.append(data[field][nz_filter].min())
-            maxs.append(data[field][nz_filter].max())
+            mins.append(np.nanmin(data[field][nz_filter]))
+            maxs.append(np.nanmax(data[field][nz_filter]))
         else:
             if this_filter.any():
                 if non_zero:
                     nz_filter = ((this_filter) &
                                  (data[field][this_filter] > 0.0))
                 else: nz_filter = this_filter
-                mins.append(data[field][nz_filter].min())
-                maxs.append(data[field][nz_filter].max())
+                mins.append(np.nanmin(data[field][nz_filter]))
+                maxs.append(np.nanmax(data[field][nz_filter]))
             else:
                 mins.append(1e90)
                 maxs.append(-1e90)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/field_info_container.py
--- a/yt/data_objects/field_info_container.py
+++ b/yt/data_objects/field_info_container.py
@@ -160,7 +160,8 @@
             # required attrs
             pf = fake_parameter_file(lambda: 1)
             pf.current_redshift = pf.omega_lambda = pf.omega_matter = \
-                pf.hubble_constant = pf.cosmological_simulation = 0.0
+                pf.cosmological_simulation = 0.0
+            pf.hubble_constant = 0.7
             pf.domain_left_edge = np.zeros(3, 'float64')
             pf.domain_right_edge = np.ones(3, 'float64')
             pf.dimensionality = 3


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/tests/test_covering_grid.py
--- /dev/null
+++ b/yt/data_objects/tests/test_covering_grid.py
@@ -0,0 +1,27 @@
+from yt.testing import *
+from yt.data_objects.profiles import \
+    BinnedProfile1D, BinnedProfile2D, BinnedProfile3D
+
+def setup():
+    from yt.config import ytcfg
+    ytcfg["yt","__withintesting"] = "True"
+
+def test_covering_grid():
+    # We decompose in different ways
+    for level in [0, 1, 2]:
+        for nprocs in [1, 2, 4, 8]:
+            pf = fake_random_pf(16, nprocs = nprocs)
+            dn = pf.refine_by**level 
+            cg = pf.h.covering_grid(level, [0.0, 0.0, 0.0],
+                    dn * pf.domain_dimensions)
+            yield assert_equal, cg["Ones"].max(), 1.0
+            yield assert_equal, cg["Ones"].min(), 1.0
+            yield assert_equal, cg["CellVolume"].sum(), pf.domain_width.prod()
+            for g in pf.h.grids:
+                di = g.get_global_startindex()
+                dd = g.ActiveDimensions
+                for i in range(dn):
+                    f = cg["Density"][dn*di[0]+i:dn*(di[0]+dd[0])+i:dn,
+                                      dn*di[1]+i:dn*(di[1]+dd[1])+i:dn,
+                                      dn*di[2]+i:dn*(di[2]+dd[2])+i:dn]
+                    yield assert_equal, f, g["Density"]


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/tests/test_derived_quantities.py
--- /dev/null
+++ b/yt/data_objects/tests/test_derived_quantities.py
@@ -0,0 +1,24 @@
+from yt.testing import *
+import numpy as np
+
+def setup():
+    from yt.config import ytcfg
+    ytcfg["yt","__withintesting"] = "True"
+
+def test_extrema():
+    for nprocs in [1, 2, 4, 8]:
+        pf = fake_random_pf(16, nprocs = nprocs, fields = ("Density",
+                "x-velocity", "y-velocity", "z-velocity"))
+        sp = pf.h.sphere("c", (0.25, '1'))
+        (mi, ma), = sp.quantities["Extrema"]("Density")
+        yield assert_equal, mi, np.nanmin(sp["Density"])
+        yield assert_equal, ma, np.nanmax(sp["Density"])
+        dd = pf.h.all_data()
+        (mi, ma), = dd.quantities["Extrema"]("Density")
+        yield assert_equal, mi, np.nanmin(dd["Density"])
+        yield assert_equal, ma, np.nanmax(dd["Density"])
+        sp = pf.h.sphere("max", (0.25, '1'))
+        yield assert_equal, np.any(np.isnan(sp["RadialVelocity"])), True
+        (mi, ma), = dd.quantities["Extrema"]("RadialVelocity")
+        yield assert_equal, mi, np.nanmin(dd["RadialVelocity"])
+        yield assert_equal, ma, np.nanmax(dd["RadialVelocity"])


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/tests/test_extract_regions.py
--- /dev/null
+++ b/yt/data_objects/tests/test_extract_regions.py
@@ -0,0 +1,53 @@
+from yt.testing import *
+
+def setup():
+    from yt.config import ytcfg
+    ytcfg["yt","__withintesting"] = "True"
+
+def test_cut_region():
+    # We decompose in different ways
+    for nprocs in [1, 2, 4, 8]:
+        pf = fake_random_pf(64, nprocs = nprocs,
+            fields = ("Density", "Temperature", "x-velocity"))
+        # We'll test two objects
+        dd = pf.h.all_data()
+        r = dd.cut_region( [ "grid['Temperature'] > 0.5",
+                             "grid['Density'] < 0.75",
+                             "grid['x-velocity'] > 0.25" ])
+        t = ( (dd["Temperature"] > 0.5 ) 
+            & (dd["Density"] < 0.75 )
+            & (dd["x-velocity"] > 0.25 ) )
+        yield assert_equal, np.all(r["Temperature"] > 0.5), True
+        yield assert_equal, np.all(r["Density"] < 0.75), True
+        yield assert_equal, np.all(r["x-velocity"] > 0.25), True
+        yield assert_equal, np.sort(dd["Density"][t]), np.sort(r["Density"])
+        yield assert_equal, np.sort(dd["x"][t]), np.sort(r["x"])
+        r2 = r.cut_region( [ "grid['Temperature'] < 0.75" ] )
+        t2 = (r["Temperature"] < 0.75)
+        yield assert_equal, np.sort(r2["Temperature"]), np.sort(r["Temperature"][t2])
+        yield assert_equal, np.all(r2["Temperature"] < 0.75), True
+
+def test_extract_region():
+    # We decompose in different ways
+    for nprocs in [1, 2, 4, 8]:
+        pf = fake_random_pf(64, nprocs = nprocs,
+            fields = ("Density", "Temperature", "x-velocity"))
+        # We'll test two objects
+        dd = pf.h.all_data()
+        t = ( (dd["Temperature"] > 0.5 ) 
+            & (dd["Density"] < 0.75 )
+            & (dd["x-velocity"] > 0.25 ) )
+        r = dd.extract_region(t)
+        yield assert_equal, np.all(r["Temperature"] > 0.5), True
+        yield assert_equal, np.all(r["Density"] < 0.75), True
+        yield assert_equal, np.all(r["x-velocity"] > 0.25), True
+        yield assert_equal, np.sort(dd["Density"][t]), np.sort(r["Density"])
+        yield assert_equal, np.sort(dd["x"][t]), np.sort(r["x"])
+        t2 = (r["Temperature"] < 0.75)
+        r2 = r.cut_region( [ "grid['Temperature'] < 0.75" ] )
+        yield assert_equal, np.sort(r2["Temperature"]), np.sort(r["Temperature"][t2])
+        yield assert_equal, np.all(r2["Temperature"] < 0.75), True
+        t3 = (r["Temperature"] < 0.75)
+        r3 = r.extract_region( t3 )
+        yield assert_equal, np.sort(r3["Temperature"]), np.sort(r["Temperature"][t3])
+        yield assert_equal, np.all(r3["Temperature"] < 0.75), True


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/tests/test_fields.py
--- /dev/null
+++ b/yt/data_objects/tests/test_fields.py
@@ -0,0 +1,91 @@
+from yt.testing import *
+import numpy as np
+from yt.data_objects.field_info_container import \
+    FieldInfo
+import yt.data_objects.universal_fields
+from yt.utilities.definitions import \
+    mpc_conversion, sec_conversion
+
+def setup():
+    from yt.config import ytcfg
+    ytcfg["yt","__withintesting"] = "True"
+    np.seterr(all = 'ignore')
+
+_sample_parameters = dict(
+    axis = 0,
+    center = np.array((0.0, 0.0, 0.0)),
+    bulk_velocity = np.array((0.0, 0.0, 0.0)),
+    normal = np.array((0.0, 0.0, 1.0)),
+    cp_x_vec = np.array((1.0, 0.0, 0.0)),
+    cp_y_vec = np.array((0.0, 1.0, 0.0)),
+    cp_z_vec = np.array((0.0, 0.0, 1.0)),
+)
+
+_base_fields = ["Density", "x-velocity", "y-velocity", "z-velocity"]
+
+def realistic_pf(fields, nprocs):
+    pf = fake_random_pf(16, fields = fields, nprocs = nprocs)
+    pf.parameters["HydroMethod"] = "streaming"
+    pf.parameters["Gamma"] = 5.0/3.0
+    pf.parameters["EOSType"] = 1.0
+    pf.parameters["EOSSoundSpeed"] = 1.0
+    pf.conversion_factors["Time"] = 1.0
+    pf.conversion_factors.update( dict((f, 1.0) for f in fields) )
+    pf.current_redshift = 0.0001
+    pf.hubble_constant = 0.7
+    for unit in mpc_conversion:
+        pf.units[unit+'h'] = pf.units[unit]
+        pf.units[unit+'cm'] = pf.units[unit]
+        pf.units[unit+'hcm'] = pf.units[unit]
+    return pf
+
+class TestFieldAccess(object):
+    description = None
+
+    def __init__(self, field_name, nproc):
+        # Note this should be a field name
+        self.field_name = field_name
+        self.description = "Accessing_%s_%s" % (field_name, nproc)
+        self.nproc = nproc
+
+    def __call__(self):
+        field = FieldInfo[self.field_name]
+        deps = field.get_dependencies()
+        fields = deps.requested + _base_fields
+        skip_grids = False
+        needs_spatial = False
+        for v in field.validators:
+            f = getattr(v, "fields", None)
+            if f: fields += f
+            if getattr(v, "ghost_zones", 0) > 0:
+                skip_grids = True
+            if hasattr(v, "ghost_zones"):
+                needs_spatial = True
+        pf = realistic_pf(fields, self.nproc)
+        # This gives unequal sized grids as well as subgrids
+        dd1 = pf.h.all_data()
+        dd2 = pf.h.all_data()
+        dd1.field_parameters.update(_sample_parameters)
+        dd2.field_parameters.update(_sample_parameters)
+        v1 = dd1[self.field_name]
+        conv = field._convert_function(dd1) or 1.0
+        if not needs_spatial:
+            assert_equal(v1, conv*field._function(field, dd2))
+        if not skip_grids:
+            for g in pf.h.grids:
+                g.field_parameters.update(_sample_parameters)
+                conv = field._convert_function(g) or 1.0
+                v1 = g[self.field_name]
+                g.clear_data()
+                g.field_parameters.update(_sample_parameters)
+                assert_equal(v1, conv*field._function(field, g))
+
+def test_all_fields():
+    for field in FieldInfo:
+        if field.startswith("CuttingPlane"): continue
+        if field.startswith("particle"): continue
+        if field.startswith("CIC"): continue
+        if field.startswith("WeakLensingConvergence"): continue
+        if FieldInfo[field].particle_type: continue
+        for nproc in [1, 4, 8]:
+            yield TestFieldAccess(field, nproc)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/tests/test_ortho_rays.py
--- /dev/null
+++ b/yt/data_objects/tests/test_ortho_rays.py
@@ -0,0 +1,25 @@
+from yt.testing import *
+
+def test_ortho_ray():
+    pf = fake_random_pf(64, nprocs=8)
+    dx = (pf.domain_right_edge - pf.domain_left_edge) / \
+          pf.domain_dimensions
+
+    axes = ['x', 'y', 'z']
+    for ax, an in enumerate(axes):
+        ocoord = np.random.random(2)
+
+        my_oray = pf.h.ortho_ray(ax, ocoord)
+
+        my_axes = range(3)
+        del my_axes[ax]
+
+        # find the cells intersected by the ortho ray
+        my_all = pf.h.all_data()
+        my_cells = (np.abs(my_all[axes[my_axes[0]]] - ocoord[0]) <= 
+                    0.5 * dx[my_axes[0]]) & \
+                   (np.abs(my_all[axes[my_axes[1]]] - ocoord[1]) <= 
+                    0.5 * dx[my_axes[1]])
+
+        assert_equal(my_oray['Density'].sum(),
+                     my_all['Density'][my_cells].sum())


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/tests/test_projection.py
--- a/yt/data_objects/tests/test_projection.py
+++ b/yt/data_objects/tests/test_projection.py
@@ -2,11 +2,15 @@
 from yt.data_objects.profiles import \
     BinnedProfile1D, BinnedProfile2D, BinnedProfile3D
 
+def setup():
+    from yt.config import ytcfg
+    ytcfg["yt","__withintesting"] = "True"
+
 def test_projection():
     for nprocs in [8, 1]:
         # We want to test both 1 proc and 8 procs, to make sure that
         # parallelism isn't broken
-        pf = fake_random_pf(64, nprocs = 1)
+        pf = fake_random_pf(64, nprocs = nprocs)
         dims = pf.domain_dimensions
         xn, yn, zn = pf.domain_dimensions
         xi, yi, zi = pf.domain_left_edge + 1.0/(pf.domain_dimensions * 2)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/tests/test_rays.py
--- /dev/null
+++ b/yt/data_objects/tests/test_rays.py
@@ -0,0 +1,31 @@
+from yt.testing import *
+
+def test_ray():
+    pf = fake_random_pf(64, nprocs=8)
+    dx = (pf.domain_right_edge - pf.domain_left_edge) / \
+      pf.domain_dimensions
+
+    p1 = np.random.random(3)
+    p2 = np.random.random(3)
+
+    my_ray = pf.h.ray(p1, p2)
+    assert_rel_equal(my_ray['dts'].sum(), 1.0, 14)
+    ray_cells = my_ray['dts'] > 0
+
+    # find cells intersected by the ray
+    my_all = pf.h.all_data()
+    
+    dt = np.abs(dx / (p2 - p1))
+    tin  = np.concatenate([[(my_all['x'] - p1[0]) / (p2 - p1)[0] - 0.5 * dt[0]],
+                           [(my_all['y'] - p1[1]) / (p2 - p1)[1] - 0.5 * dt[1]],
+                           [(my_all['z'] - p1[2]) / (p2 - p1)[2] - 0.5 * dt[2]]])
+    tout = np.concatenate([[(my_all['x'] - p1[0]) / (p2 - p1)[0] + 0.5 * dt[0]],
+                           [(my_all['y'] - p1[1]) / (p2 - p1)[1] + 0.5 * dt[1]],
+                           [(my_all['z'] - p1[2]) / (p2 - p1)[2] + 0.5 * dt[2]]])
+    tin = tin.max(axis=0)
+    tout = tout.min(axis=0)
+    my_cells = (tin < tout) & (tin < 1) & (tout > 0)
+
+    assert_rel_equal(ray_cells.sum(), my_cells.sum(), 14)
+    assert_rel_equal(my_ray['Density'][ray_cells].sum(),
+                     my_all['Density'][my_cells].sum(), 14)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/time_series.py
--- a/yt/data_objects/time_series.py
+++ b/yt/data_objects/time_series.py
@@ -258,8 +258,11 @@
 
         """
         if isinstance(filenames, types.StringTypes):
+            pattern = filenames
             filenames = glob.glob(filenames)
             filenames.sort()
+            if len(filenames) == 0:
+                raise YTNoFilenamesMatchPattern(pattern)
         obj = cls(filenames[:], parallel = parallel)
         return obj
 


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/data_objects/universal_fields.py
--- a/yt/data_objects/universal_fields.py
+++ b/yt/data_objects/universal_fields.py
@@ -32,7 +32,7 @@
 
 from yt.funcs import *
 
-from yt.utilities.lib import CICDeposit_3, obtain_rvec
+from yt.utilities.lib import CICDeposit_3, obtain_rvec, obtain_rv_vec
 from yt.utilities.cosmology import Cosmology
 from field_info_container import \
     add_field, \
@@ -54,7 +54,19 @@
      kboltz, \
      G, \
      rho_crit_now, \
-     speed_of_light_cgs
+     speed_of_light_cgs, \
+     km_per_cm
+
+from yt.utilities.math_utils import \
+    get_sph_r_component, \
+    get_sph_theta_component, \
+    get_sph_phi_component, \
+    get_cyl_r_component, \
+    get_cyl_z_component, \
+    get_cyl_theta_component, \
+    get_cyl_r, get_cyl_theta, \
+    get_cyl_z, get_sph_r, \
+    get_sph_theta, get_sph_phi
      
 # Note that, despite my newfound efforts to comply with PEP-8,
 # I violate it here in order to keep the name/func_name relationship
@@ -179,12 +191,8 @@
 
 def _VelocityMagnitude(field, data):
     """M{|v|}"""
-    bulk_velocity = data.get_field_parameter("bulk_velocity")
-    if bulk_velocity == None:
-        bulk_velocity = np.zeros(3)
-    return ( (data["x-velocity"]-bulk_velocity[0])**2.0 + \
-             (data["y-velocity"]-bulk_velocity[1])**2.0 + \
-             (data["z-velocity"]-bulk_velocity[2])**2.0 )**(1.0/2.0)
+    velocities = obtain_rv_vec(data)
+    return np.sqrt(np.sum(velocities**2,axis=0))
 add_field("VelocityMagnitude", function=_VelocityMagnitude,
           take_log=False, units=r"\rm{cm}/\rm{s}")
 
@@ -194,13 +202,6 @@
           function=_TangentialOverVelocityMagnitude,
           take_log=False)
 
-def _TangentialVelocity(field, data):
-    return np.sqrt(data["VelocityMagnitude"]**2.0
-                 - data["RadialVelocity"]**2.0)
-add_field("TangentialVelocity", 
-          function=_TangentialVelocity,
-          take_log=False, units=r"\rm{cm}/\rm{s}")
-
 def _Pressure(field, data):
     """M{(Gamma-1.0)*rho*E}"""
     return (data.pf["Gamma"] - 1.0) * \
@@ -223,14 +224,9 @@
 def _sph_r(field, data):
     center = data.get_field_parameter("center")
       
-    coords = np.array([data['x'] - center[0],
-                       data['y'] - center[1],
-                       data['z'] - center[2]]).transpose()
+    coords = obtain_rvec(data)
 
-    ## The spherical coordinates radius is simply the magnitude of the
-    ## coords vector.
-
-    return np.sqrt(np.sum(coords**2,axis=-1))
+    return get_sph_r(coords)
 
 def _Convert_sph_r_CGS(data):
    return data.convert("cm")
@@ -245,20 +241,9 @@
     center = data.get_field_parameter("center")
     normal = data.get_field_parameter("normal")
     
-    coords = np.array([data['x'] - center[0],
-                       data['y'] - center[1],
-                       data['z'] - center[2]]).transpose()
+    coords = obtain_rvec(data)
 
-    ## The angle (theta) with respect to the normal (J), is the arccos
-    ## of the dot product of the normal with the normalized coords
-    ## vector.
-    
-    tile_shape = list(coords.shape)[:-1] + [1]
-    J = np.tile(normal,tile_shape)
-
-    JdotCoords = np.sum(J*coords,axis=-1)
-    
-    return np.arccos( JdotCoords / np.sqrt(np.sum(coords**2,axis=-1)) )
+    return get_sph_theta(coords, normal)
 
 add_field("sph_theta", function=_sph_theta,
          validators=[ValidateParameter("center"),ValidateParameter("normal")])
@@ -269,54 +254,21 @@
     center = data.get_field_parameter("center")
     normal = data.get_field_parameter("normal")
     
-    coords = np.array([data['x'] - center[0],
-                       data['y'] - center[1],
-                       data['z'] - center[2]]).transpose()
-    
-    ## We have freedom with respect to what axis (xprime) to define
-    ## the disk angle. Here I've chosen to use the axis that is
-    ## perpendicular to the normal and the y-axis. When normal ==
-    ## y-hat, then set xprime = z-hat. With this definition, when
-    ## normal == z-hat (as is typical), then xprime == x-hat.
-    ##
-    ## The angle is then given by the arctan of the ratio of the
-    ## yprime-component and the xprime-component of the coords vector.
+    coords = obtain_rvec(data)
 
-    xprime = np.cross([0.0,1.0,0.0],normal)
-    if np.sum(xprime) == 0: xprime = np.array([0.0, 0.0, 1.0])
-    yprime = np.cross(normal,xprime)
-    
-    tile_shape = list(coords.shape)[:-1] + [1]
-    Jx = np.tile(xprime,tile_shape)
-    Jy = np.tile(yprime,tile_shape)
-    
-    Px = np.sum(Jx*coords,axis=-1)
-    Py = np.sum(Jy*coords,axis=-1)
-    
-    return np.arctan2(Py,Px)
+    return get_sph_phi(coords, normal)
 
 add_field("sph_phi", function=_sph_phi,
          validators=[ValidateParameter("center"),ValidateParameter("normal")])
 
-
-
 ### cylindrical coordinates: R (radius in the cylinder's plane)
 def _cyl_R(field, data):
     center = data.get_field_parameter("center")
     normal = data.get_field_parameter("normal")
       
-    coords = np.array([data['x'] - center[0],
-                       data['y'] - center[1],
-                       data['z'] - center[2]]).transpose()
+    coords = obtain_rvec(data)
 
-    ## The cross product of the normal (J) with the coords vector
-    ## gives a vector of magnitude equal to the cylindrical radius.
-    
-    tile_shape = list(coords.shape)[:-1] + [1]
-    J = np.tile(normal,tile_shape)
-
-    JcrossCoords = np.cross(J,coords)
-    return np.sqrt(np.sum(JcrossCoords**2,axis=-1))
+    return get_cyl_r(coords, normal)
 
 def _Convert_cyl_R_CGS(data):
    return data.convert("cm")
@@ -324,6 +276,9 @@
 add_field("cyl_R", function=_cyl_R,
          validators=[ValidateParameter("center"),ValidateParameter("normal")],
          convert_function = _Convert_cyl_R_CGS, units=r"\rm{cm}")
+add_field("cyl_RCode", function=_cyl_R,
+          validators=[ValidateParameter("center"),ValidateParameter("normal")],
+          units=r"Radius (code)")
 
 
 ### cylindrical coordinates: z (height above the cylinder's plane)
@@ -331,17 +286,9 @@
     center = data.get_field_parameter("center")
     normal = data.get_field_parameter("normal")
     
-    coords = np.array([data['x'] - center[0],
-                       data['y'] - center[1],
-                       data['z'] - center[2]]).transpose()
+    coords = obtain_rvec(data)
 
-    ## The dot product of the normal (J) with the coords vector gives
-    ## the cylindrical height.
-    
-    tile_shape = list(coords.shape)[:-1] + [1]
-    J = np.tile(normal,tile_shape)
-
-    return np.sum(J*coords,axis=-1)  
+    return get_cyl_z(coords, normal)
 
 def _Convert_cyl_z_CGS(data):
    return data.convert("cm")
@@ -352,14 +299,17 @@
 
 
 ### cylindrical coordinates: theta (angle in the cylinder's plane)
-### [This is identical to the spherical coordinate's 'phi' angle.]
 def _cyl_theta(field, data):
-    return data['sph_phi']
+    center = data.get_field_parameter("center")
+    normal = data.get_field_parameter("normal")
+    
+    coords = obtain_rvec(data)
+
+    return get_cyl_theta(coords, normal)
 
 add_field("cyl_theta", function=_cyl_theta,
          validators=[ValidateParameter("center"),ValidateParameter("normal")])
 
-
 ### The old field DiskAngle is the same as the spherical coordinates'
 ### 'theta' angle. I'm keeping DiskAngle for backwards compatibility.
 def _DiskAngle(field, data):
@@ -392,6 +342,54 @@
                       ValidateParameter("normal")],
           units=r"AU", display_field=False)
 
+def _cyl_RadialVelocity(field, data):
+    normal = data.get_field_parameter("normal")
+    velocities = obtain_rv_vec(data)
+
+    theta = data['cyl_theta']
+
+    return get_cyl_r_component(velocities, theta, normal)
+
+def _cyl_RadialVelocityABS(field, data):
+    return np.abs(_cyl_RadialVelocity(field, data))
+def _Convert_cyl_RadialVelocityKMS(data):
+    return km_per_cm
+add_field("cyl_RadialVelocity", function=_cyl_RadialVelocity,
+          units=r"\rm{cm}/\rm{s}",
+          validators=[ValidateParameter("normal")])
+add_field("cyl_RadialVelocityABS", function=_cyl_RadialVelocityABS,
+          units=r"\rm{cm}/\rm{s}",
+          validators=[ValidateParameter("normal")])
+add_field("cyl_RadialVelocityKMS", function=_cyl_RadialVelocity,
+          convert_function=_Convert_cyl_RadialVelocityKMS, units=r"\rm{km}/\rm{s}",
+          validators=[ValidateParameter("normal")])
+add_field("cyl_RadialVelocityKMSABS", function=_cyl_RadialVelocityABS,
+          convert_function=_Convert_cyl_RadialVelocityKMS, units=r"\rm{km}/\rm{s}",
+          validators=[ValidateParameter("normal")])
+
+def _cyl_TangentialVelocity(field, data):
+    normal = data.get_field_parameter("normal")
+    velocities = obtain_rv_vec(data)
+    theta = data['cyl_theta']
+
+    return get_cyl_theta_component(velocities, theta, normal)
+
+def _cyl_TangentialVelocityABS(field, data):
+    return np.abs(_cyl_TangentialVelocity(field, data))
+def _Convert_cyl_TangentialVelocityKMS(data):
+    return km_per_cm
+add_field("cyl_TangentialVelocity", function=_cyl_TangentialVelocity,
+          units=r"\rm{cm}/\rm{s}",
+          validators=[ValidateParameter("normal")])
+add_field("cyl_TangentialVelocityABS", function=_cyl_TangentialVelocityABS,
+          units=r"\rm{cm}/\rm{s}",
+          validators=[ValidateParameter("normal")])
+add_field("cyl_TangentialVelocityKMS", function=_cyl_TangentialVelocity,
+          convert_function=_Convert_cyl_TangentialVelocityKMS, units=r"\rm{km}/\rm{s}",
+          validators=[ValidateParameter("normal")])
+add_field("cyl_TangentialVelocityKMSABS", function=_cyl_TangentialVelocityABS,
+          convert_function=_Convert_cyl_TangentialVelocityKMS, units=r"\rm{km}/\rm{s}",
+          validators=[ValidateParameter("normal")])
 
 def _DynamicalTime(field, data):
     """
@@ -450,7 +448,7 @@
 
 # This is rho_total / rho_cr(z).
 def _Convert_Overdensity(data):
-    return 1 / (rho_crit_now * data.pf.hubble_constant**2 * 
+    return 1.0 / (rho_crit_now * data.pf.hubble_constant**2 * 
                 (1+data.pf.current_redshift)**3)
 add_field("Overdensity",function=_Matter_Density,
           convert_function=_Convert_Overdensity, units=r"")
@@ -470,8 +468,8 @@
     else:
         omega_baryon_now = 0.0441
     return data['Density'] / (omega_baryon_now * rho_crit_now * 
-                              (data.pf['CosmologyHubbleConstantNow']**2) * 
-                              ((1+data.pf['CosmologyCurrentRedshift'])**3))
+                              (data.pf.hubble_constant**2) * 
+                              ((1+data.pf.current_redshift)**3))
 add_field("Baryon_Overdensity", function=_Baryon_Overdensity, 
           units=r"")
 
@@ -640,13 +638,7 @@
           take_log=False, display_field=False)
 
 def obtain_velocities(data):
-    if data.has_field_parameter("bulk_velocity"):
-        bv = data.get_field_parameter("bulk_velocity")
-    else: bv = np.zeros(3, dtype='float64')
-    xv = data["x-velocity"] - bv[0]
-    yv = data["y-velocity"] - bv[1]
-    zv = data["z-velocity"] - bv[2]
-    return xv, yv, zv
+    return obtain_rv_vec(data)
 
 def _convertSpecificAngularMomentum(data):
     return data.convert("cm")
@@ -711,7 +703,7 @@
 #          convert_function=_convertSpecificAngularMomentum, vector_field=True,
 #          units=r"\rm{cm}^2/\rm{s}", validators=[ValidateParameter('center')])
 def _convertSpecificAngularMomentumKMSMPC(data):
-    return data.convert("mpc")/1e5
+    return km_per_cm*data.convert("mpc")
 #add_field("ParticleSpecificAngularMomentumKMSMPC",
 #          function=_ParticleSpecificAngularMomentum, particle_type=True,
 #          convert_function=_convertSpecificAngularMomentumKMSMPC, vector_field=True,
@@ -883,33 +875,32 @@
           display_name = "Radius (code)")
 
 def _RadialVelocity(field, data):
-    center = data.get_field_parameter("center")
-    bulk_velocity = data.get_field_parameter("bulk_velocity")
-    if bulk_velocity == None:
-        bulk_velocity = np.zeros(3)
-    new_field = ( (data['x']-center[0])*(data["x-velocity"]-bulk_velocity[0])
-                + (data['y']-center[1])*(data["y-velocity"]-bulk_velocity[1])
-                + (data['z']-center[2])*(data["z-velocity"]-bulk_velocity[2])
-                )/data["RadiusCode"]
-    if np.any(np.isnan(new_field)): # to fix center = point
-        new_field[np.isnan(new_field)] = 0.0
-    return new_field
+    normal = data.get_field_parameter("normal")
+    velocities = obtain_rv_vec(data)    
+    theta = data['sph_theta']
+    phi   = data['sph_phi']
+
+    return get_sph_r_component(velocities, theta, phi, normal)
+
 def _RadialVelocityABS(field, data):
     return np.abs(_RadialVelocity(field, data))
 def _ConvertRadialVelocityKMS(data):
-    return 1e-5
+    return km_per_cm
 add_field("RadialVelocity", function=_RadialVelocity,
-          units=r"\rm{cm}/\rm{s}",
-          validators=[ValidateParameter("center")])
+          units=r"\rm{cm}/\rm{s}")
 add_field("RadialVelocityABS", function=_RadialVelocityABS,
-          units=r"\rm{cm}/\rm{s}",
-          validators=[ValidateParameter("center")])
+          units=r"\rm{cm}/\rm{s}")
 add_field("RadialVelocityKMS", function=_RadialVelocity,
-          convert_function=_ConvertRadialVelocityKMS, units=r"\rm{km}/\rm{s}",
-          validators=[ValidateParameter("center")])
+          convert_function=_ConvertRadialVelocityKMS, units=r"\rm{km}/\rm{s}")
 add_field("RadialVelocityKMSABS", function=_RadialVelocityABS,
-          convert_function=_ConvertRadialVelocityKMS, units=r"\rm{km}/\rm{s}",
-          validators=[ValidateParameter("center")])
+          convert_function=_ConvertRadialVelocityKMS, units=r"\rm{km}/\rm{s}")
+
+def _TangentialVelocity(field, data):
+    return np.sqrt(data["VelocityMagnitude"]**2.0
+                 - data["RadialVelocity"]**2.0)
+add_field("TangentialVelocity", 
+          function=_TangentialVelocity,
+          take_log=False, units=r"\rm{cm}/\rm{s}")
 
 def _CuttingPlaneVelocityX(field, data):
     x_vec, y_vec, z_vec = [data.get_field_parameter("cp_%s_vec" % (ax))
@@ -1026,6 +1017,47 @@
           display_name=r"\rm{Magnetic}\/\rm{Energy}",
           units="\rm{ergs}\/\rm{cm}^{-3}")
 
+def _BPoloidal(field,data):
+    normal = data.get_field_parameter("normal")
+
+    Bfields = np.array([data['Bx'], data['By'], data['Bz']])
+
+    theta = data['sph_theta']
+    phi   = data['sph_phi']
+
+    return get_sph_theta_component(Bfields, theta, phi, normal)
+
+add_field("BPoloidal", function=_BPoloidal,
+          units=r"\rm{Gauss}",
+          validators=[ValidateParameter("normal")])
+
+def _BToroidal(field,data):
+    normal = data.get_field_parameter("normal")
+
+    Bfields = np.array([data['Bx'], data['By'], data['Bz']])
+
+    phi   = data['sph_phi']
+
+    return get_sph_phi_component(Bfields, phi, normal)
+
+add_field("BToroidal", function=_BToroidal,
+          units=r"\rm{Gauss}",
+          validators=[ValidateParameter("normal")])
+
+def _BRadial(field,data):
+    normal = data.get_field_parameter("normal")
+
+    Bfields = np.array([data['Bx'], data['By'], data['Bz']])
+
+    theta = data['sph_theta']
+    phi   = data['sph_phi']
+
+    return get_sph_r_component(Bfields, theta, phi, normal)
+
+add_field("BRadial", function=_BPoloidal,
+          units=r"\rm{Gauss}",
+          validators=[ValidateParameter("normal")])
+
 def _VorticitySquared(field, data):
     mylog.debug("Generating vorticity on %s", data)
     # We need to set up stencils


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/frontends/stream/data_structures.py
--- a/yt/frontends/stream/data_structures.py
+++ b/yt/frontends/stream/data_structures.py
@@ -353,7 +353,8 @@
             psize = get_psize(np.array(data[key].shape), nprocs)
             grid_left_edges, grid_right_edges, temp[key] = \
                 decompose_array(data[key], psize, bbox)
-            grid_dimensions = np.array([grid.shape for grid in temp[key]])
+            grid_dimensions = np.array([grid.shape for grid in temp[key]],
+                                       dtype="int32")
         for gid in range(nprocs):
             new_data[gid] = {}
             for key in temp.keys():
@@ -364,7 +365,7 @@
         sfh.update({0:data})
         grid_left_edges = domain_left_edge
         grid_right_edges = domain_right_edge
-        grid_dimensions = domain_dimensions.reshape(nprocs,3)
+        grid_dimensions = domain_dimensions.reshape(nprocs,3).astype("int32")
 
     handler = StreamHandler(
         grid_left_edges,


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/funcs.py
--- a/yt/funcs.py
+++ b/yt/funcs.py
@@ -310,7 +310,8 @@
     maxval = max(maxval, 1)
     from yt.config import ytcfg
     if ytcfg.getboolean("yt", "suppressStreamLogging") or \
-       ytcfg.getboolean("yt", "ipython_notebook"):
+       ytcfg.getboolean("yt", "ipython_notebook") or \
+       ytcfg.getboolean("yt", "__withintesting"):
         return DummyProgressBar()
     elif ytcfg.getboolean("yt", "__withinreason"):
         from yt.gui.reason.extdirect_repl import ExtProgressBar




diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/decompose.py
--- a/yt/utilities/decompose.py
+++ b/yt/utilities/decompose.py
@@ -68,9 +68,12 @@
 def evaluate_domain_decomposition(n_d, pieces, ldom):
     """ Evaluate longest to shortest edge ratio
         BEWARE: lot's of magic here """
-    ideal_bsize = 3.0 * (pieces * np.product(n_d) ** 2) ** (1.0 / 3.0)
-    bsize = int(np.sum(
-        ldom / np.array(n_d, dtype=np.float64) * np.product(n_d)))
+    eff_dim = (n_d > 1).sum()
+    ideal_bsize = eff_dim * (pieces * np.product(n_d) ** (eff_dim - 1)
+                             ) ** (1.0 / eff_dim)
+    mask = np.where(n_d > 1)
+    nd_arr = np.array(n_d, dtype=np.float64)[mask]
+    bsize = int(np.sum(ldom[mask] / nd_arr * np.product(nd_arr)))
     load_balance = float(np.product(n_d)) / \
         (float(pieces) * np.product((n_d - 1) / ldom + 1))
 
@@ -134,23 +137,15 @@
 
 
 def split_array(tab, psize):
-    """ Split array into px*py*pz subarrays using internal numpy routine. """
-    temp = [np.array_split(array, psize[1], axis=1)
-            for array in np.array_split(tab, psize[2], axis=2)]
-    temp = [item for sublist in temp for item in sublist]
-    temp = [np.array_split(array, psize[0], axis=0) for array in temp]
-    temp = [item for sublist in temp for item in sublist]
-    return temp
-
-
-if __name__ == "__main__":
-
-    NPROC = 12
-    ARRAY = np.zeros((128, 128, 129))
-    BBOX = np.array([[0., 1.0], [-1.5, 1.5], [1.0, 2.5]])
-
-    PROCS = get_psize(np.array(ARRAY.shape), NPROC)
-    LE, RE, DATA = decompose_array(ARRAY, PROCS, BBOX)
-
-    for idx in range(NPROC):
-        print LE[idx, :], RE[idx, :], DATA[idx].shape
+    """ Split array into px*py*pz subarrays. """
+    n_d = np.array(tab.shape, dtype=np.int64)
+    slices = []
+    for i in range(psize[0]):
+        for j in range(psize[1]):
+            for k in range(psize[2]):
+                piece = np.array((i, j, k), dtype=np.int64)
+                lei = n_d * piece / psize
+                rei = n_d * (piece + np.ones(3, dtype=np.int64)) / psize
+                slices.append(np.s_[lei[0]:rei[0], lei[1]:
+                                    rei[1], lei[2]:rei[2]])
+    return [tab[slc] for slc in slices]


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/exceptions.py
--- a/yt/utilities/exceptions.py
+++ b/yt/utilities/exceptions.py
@@ -146,3 +146,11 @@
     def __str__(self):
         return "You must create an API key before uploading.  See " + \
                "https://data.yt-project.org/getting_started.html"
+
+class YTNoFilenamesMatchPattern(YTException):
+    def __init__(self, pattern):
+        self.pattern = pattern
+
+    def __str__(self):
+        return "No filenames were found to match the pattern: " + \
+               "'%s'" % (self.pattern)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/kdtree/__init__.py
--- a/yt/utilities/kdtree/__init__.py
+++ b/yt/utilities/kdtree/__init__.py
@@ -1,1 +0,0 @@
-from fKDpy import *


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/kdtree/api.py
--- /dev/null
+++ b/yt/utilities/kdtree/api.py
@@ -0,0 +1,9 @@
+from fKDpy import \
+    chainHOP_tags_dens, \
+    create_tree, \
+    fKD, \
+    find_nn_nearest_neighbors, \
+    free_tree, \
+    find_chunk_nearest_neighbors
+
+


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/kdtree/test.py
--- a/yt/utilities/kdtree/test.py
+++ /dev/null
@@ -1,58 +0,0 @@
-from Forthon import *
-from fKDpy import *
-import numpy,random
-
-n = 32768
-
-
-fKD.tags = fzeros((64),'i')
-fKD.dist = fzeros((64),'d')
-fKD.pos = fzeros((3,n),'d')
-fKD.nn = 64
-fKD.nparts = n
-fKD.sort = True
-fKD.rearrange = True
-fKD.qv = numpy.array([16./32, 16./32, 16./32])
-
-fp = open('parts.txt','r')
-xpos = []
-ypos = []
-zpos = []
-line = fp.readline()
-while line:
-    line = line.split()
-    xpos.append(float(line[0]))
-    ypos.append(float(line[1]))
-    zpos.append(float(line[2]))
-    line= fp.readline()
-
-fp.close()
-
-
-for k in range(32):
-    for j in range(32):
-        for i in range(32):
-            fKD.pos[0][i + j*32 + k*1024] = float(i)/32 + 1./64 + 0.0001*random.random()
-            fKD.pos[1][i + j*32 + k*1024] = float(j)/32 + 1./64 + 0.0001*random.random()
-            fKD.pos[2][i + j*32 + k*1024] = float(k)/32 + 1./64 + 0.0001*random.random()
-
-            
-
-#print fKD.pos[0][0],fKD.pos[1][0],fKD.pos[2][0]
-
-create_tree()
-
-
-find_nn_nearest_neighbors()
-
-#print 'next'
-
-#fKD.qv = numpy.array([0., 0., 0.])
-
-#find_nn_nearest_neighbors()
-
-
-#print (fKD.tags - 1)
-#print fKD.dist
-
-free_tree()


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/lib/geometry_utils.pyx
--- a/yt/utilities/lib/geometry_utils.pyx
+++ b/yt/utilities/lib/geometry_utils.pyx
@@ -338,3 +338,47 @@
                     rg[2,i,j,k] = zg[i,j,k] - c[2]
         return rg
 
+ at cython.boundscheck(False)
+ at cython.wraparound(False)
+ at cython.cdivision(True)
+def obtain_rv_vec(data):
+    # This is just to let the pointers exist and whatnot.  We can't cdef them
+    # inside conditionals.
+    cdef np.ndarray[np.float64_t, ndim=1] vxf
+    cdef np.ndarray[np.float64_t, ndim=1] vyf
+    cdef np.ndarray[np.float64_t, ndim=1] vzf
+    cdef np.ndarray[np.float64_t, ndim=2] rvf
+    cdef np.ndarray[np.float64_t, ndim=3] vxg
+    cdef np.ndarray[np.float64_t, ndim=3] vyg
+    cdef np.ndarray[np.float64_t, ndim=3] vzg
+    cdef np.ndarray[np.float64_t, ndim=4] rvg
+    cdef np.float64_t bv[3]
+    cdef int i, j, k
+    bulk_velocity = data.get_field_parameter("bulk_velocity")
+    if bulk_velocity == None:
+        bulk_velocity = np.zeros(3)
+    bv[0] = bulk_velocity[0]; bv[1] = bulk_velocity[1]; bv[2] = bulk_velocity[2]
+    if len(data['x-velocity'].shape) == 1:
+        # One dimensional data
+        vxf = data['x-velocity'].astype("float64")
+        vyf = data['y-velocity'].astype("float64")
+        vzf = data['z-velocity'].astype("float64")
+        rvf = np.empty((3, vxf.shape[0]), 'float64')
+        for i in range(vxf.shape[0]):
+            rvf[0, i] = vxf[i] - bv[0]
+            rvf[1, i] = vyf[i] - bv[1]
+            rvf[2, i] = vzf[i] - bv[2]
+        return rvf
+    else:
+        # Three dimensional data
+        vxg = data['x-velocity'].astype("float64")
+        vyg = data['y-velocity'].astype("float64")
+        vzg = data['z-velocity'].astype("float64")
+        rvg = np.empty((3, vxg.shape[0], vxg.shape[1], vxg.shape[2]), 'float64')
+        for i in range(vxg.shape[0]):
+            for j in range(vxg.shape[1]):
+                for k in range(vxg.shape[2]):
+                    rvg[0,i,j,k] = vxg[i,j,k] - bv[0]
+                    rvg[1,i,j,k] = vyg[i,j,k] - bv[1]
+                    rvg[2,i,j,k] = vzg[i,j,k] - bv[2]
+        return rvg


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/lib/misc_utilities.pyx
--- a/yt/utilities/lib/misc_utilities.pyx
+++ b/yt/utilities/lib/misc_utilities.pyx
@@ -233,49 +233,6 @@
 @cython.boundscheck(False)
 @cython.wraparound(False)
 @cython.cdivision(True)
-def obtain_rvec(data):
-    # This is just to let the pointers exist and whatnot.  We can't cdef them
-    # inside conditionals.
-    cdef np.ndarray[np.float64_t, ndim=1] xf
-    cdef np.ndarray[np.float64_t, ndim=1] yf
-    cdef np.ndarray[np.float64_t, ndim=1] zf
-    cdef np.ndarray[np.float64_t, ndim=2] rf
-    cdef np.ndarray[np.float64_t, ndim=3] xg
-    cdef np.ndarray[np.float64_t, ndim=3] yg
-    cdef np.ndarray[np.float64_t, ndim=3] zg
-    cdef np.ndarray[np.float64_t, ndim=4] rg
-    cdef np.float64_t c[3]
-    cdef int i, j, k
-    center = data.get_field_parameter("center")
-    c[0] = center[0]; c[1] = center[1]; c[2] = center[2]
-    if len(data['x'].shape) == 1:
-        # One dimensional data
-        xf = data['x']
-        yf = data['y']
-        zf = data['z']
-        rf = np.empty((3, xf.shape[0]), 'float64')
-        for i in range(xf.shape[0]):
-            rf[0, i] = xf[i] - c[0]
-            rf[1, i] = yf[i] - c[1]
-            rf[2, i] = zf[i] - c[2]
-        return rf
-    else:
-        # Three dimensional data
-        xg = data['x']
-        yg = data['y']
-        zg = data['z']
-        rg = np.empty((3, xg.shape[0], xg.shape[1], xg.shape[2]), 'float64')
-        for i in range(xg.shape[0]):
-            for j in range(xg.shape[1]):
-                for k in range(xg.shape[2]):
-                    rg[0,i,j,k] = xg[i,j,k] - c[0]
-                    rg[1,i,j,k] = yg[i,j,k] - c[1]
-                    rg[2,i,j,k] = zg[i,j,k] - c[2]
-        return rg
-
- at cython.boundscheck(False)
- at cython.wraparound(False)
- at cython.cdivision(True)
 def kdtree_get_choices(np.ndarray[np.float64_t, ndim=3] data,
                        np.ndarray[np.float64_t, ndim=1] l_corner,
                        np.ndarray[np.float64_t, ndim=1] r_corner):


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/lib/tests/test_geometry_utils.py
--- /dev/null
+++ b/yt/utilities/lib/tests/test_geometry_utils.py
@@ -0,0 +1,30 @@
+from yt.testing import *
+from yt.utilities.lib import obtain_rvec, obtain_rv_vec
+
+_fields = ("Density", "x-velocity", "y-velocity", "z-velocity")
+
+def test_obtain_rvec():
+    pf = fake_random_pf(64, nprocs=8, fields=_fields, 
+           negative = [False, True, True, True])
+    
+    dd = pf.h.sphere((0.5,0.5,0.5), 0.2)
+
+    coords = obtain_rvec(dd)
+
+    r = np.sqrt(np.sum(coords*coords,axis=0))
+
+    assert_array_less(r.max(), 0.2)
+
+    assert_array_less(0.0, r.min())
+
+def test_obtain_rv_vec():
+    pf = fake_random_pf(64, nprocs=8, fields=_fields, 
+           negative = [False, True, True, True])
+
+    dd = pf.h.all_data()
+
+    vels = obtain_rv_vec(dd)
+
+    assert_array_equal(vels[0,:], dd['x-velocity'])
+    assert_array_equal(vels[1,:], dd['y-velocity'])
+    assert_array_equal(vels[2,:], dd['z-velocity'])


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/math_utils.py
--- a/yt/utilities/math_utils.py
+++ b/yt/utilities/math_utils.py
@@ -674,3 +674,191 @@
                   [uz*ux*(1-cost)-uy*sint, uz*uy*(1-cost)+ux*sint, cost+uz**2*(1-cost)]])
     
     return R
+
+def get_ortho_basis(normal):
+    xprime = np.cross([0.0,1.0,0.0],normal)
+    if np.sum(xprime) == 0: xprime = np.array([0.0, 0.0, 1.0])
+    yprime = np.cross(normal,xprime)
+    zprime = normal
+    return (xprime, yprime, zprime)
+
+def get_sph_r(coords):
+    # The spherical coordinates radius is simply the magnitude of the
+    # coordinate vector.
+
+    return np.sqrt(np.sum(coords**2, axis=0))
+
+def resize_vector(vector,vector_array):
+    if len(vector_array.shape) == 4:
+        res_vector = np.resize(vector,(3,1,1,1))
+    else:
+        res_vector = np.resize(vector,(3,1))
+    return res_vector
+
+def get_sph_theta(coords, normal):
+    # The angle (theta) with respect to the normal (J), is the arccos
+    # of the dot product of the normal with the normalized coordinate
+    # vector.
+    
+    res_normal = resize_vector(normal, coords)
+
+    tile_shape = [1] + list(coords.shape)[1:]
+    
+    J = np.tile(res_normal,tile_shape)
+
+    JdotCoords = np.sum(J*coords,axis=0)
+    
+    return np.arccos( JdotCoords / np.sqrt(np.sum(coords**2,axis=0)) )
+
+def get_sph_phi(coords, normal):
+    # We have freedom with respect to what axis (xprime) to define
+    # the disk angle. Here I've chosen to use the axis that is
+    # perpendicular to the normal and the y-axis. When normal ==
+    # y-hat, then set xprime = z-hat. With this definition, when
+    # normal == z-hat (as is typical), then xprime == x-hat.
+    #
+    # The angle is then given by the arctan of the ratio of the
+    # yprime-component and the xprime-component of the coordinate 
+    # vector.
+
+    (xprime, yprime, zprime) = get_ortho_basis(normal)
+
+    res_xprime = resize_vector(xprime, coords)
+    res_yprime = resize_vector(yprime, coords)
+
+    tile_shape = [1] + list(coords.shape)[1:]
+    Jx = np.tile(res_xprime,tile_shape)
+    Jy = np.tile(res_yprime,tile_shape)
+
+    Px = np.sum(Jx*coords,axis=0)
+    Py = np.sum(Jy*coords,axis=0)
+    
+    return np.arctan2(Py,Px)
+
+def get_cyl_r(coords, normal):
+    # The cross product of the normal (J) with a coordinate vector
+    # gives a vector of magnitude equal to the cylindrical radius.
+
+    res_normal = resize_vector(normal, coords)
+
+    tile_shape = [1] + list(coords.shape)[1:]
+    J = np.tile(res_normal, tile_shape)
+    
+    JcrossCoords = np.cross(J, coords, axisa=0, axisb=0, axisc=0)
+    return np.sqrt(np.sum(JcrossCoords**2, axis=0))
+
+def get_cyl_z(coords, normal):
+    # The dot product of the normal (J) with the coordinate vector 
+    # gives the cylindrical height.
+
+    res_normal = resize_vector(normal, coords)
+    
+    tile_shape = [1] + list(coords.shape)[1:]
+    J = np.tile(res_normal, tile_shape)
+
+    return np.sum(J*coords, axis=0)  
+
+def get_cyl_theta(coords, normal):
+    # This is identical to the spherical phi component
+
+    return get_sph_phi(coords, normal)
+
+
+def get_cyl_r_component(vectors, theta, normal):
+    # The r of a vector is the vector dotted with rhat
+
+    (xprime, yprime, zprime) = get_ortho_basis(normal)
+
+    res_xprime = resize_vector(xprime, vectors)
+    res_yprime = resize_vector(yprime, vectors)
+
+    tile_shape = [1] + list(vectors.shape)[1:]
+    Jx = np.tile(res_xprime,tile_shape)
+    Jy = np.tile(res_yprime,tile_shape)
+
+    rhat = Jx*np.cos(theta) + Jy*np.sin(theta)
+
+    return np.sum(vectors*rhat,axis=0)
+
+def get_cyl_theta_component(vectors, theta, normal):
+    # The theta component of a vector is the vector dotted with thetahat
+    
+    (xprime, yprime, zprime) = get_ortho_basis(normal)
+
+    res_xprime = resize_vector(xprime, vectors)
+    res_yprime = resize_vector(yprime, vectors)
+
+    tile_shape = [1] + list(vectors.shape)[1:]
+    Jx = np.tile(res_xprime,tile_shape)
+    Jy = np.tile(res_yprime,tile_shape)
+
+    thetahat = -Jx*np.sin(theta) + Jy*np.cos(theta)
+
+    return np.sum(vectors*thetahat, axis=0)
+
+def get_cyl_z_component(vectors, normal):
+    # The z component of a vector is the vector dotted with zhat
+    (xprime, yprime, zprime) = get_ortho_basis(normal)
+
+    res_zprime = resize_vector(zprime, vectors)
+
+    tile_shape = [1] + list(vectors.shape)[1:]
+    zhat = np.tile(res_zprime, tile_shape)
+
+    return np.sum(vectors*zhat, axis=0)
+
+def get_sph_r_component(vectors, theta, phi, normal):
+    # The r component of a vector is the vector dotted with rhat
+    
+    (xprime, yprime, zprime) = get_ortho_basis(normal)
+
+    res_xprime = resize_vector(xprime, vectors)
+    res_yprime = resize_vector(yprime, vectors)
+    res_zprime = resize_vector(zprime, vectors)
+
+    tile_shape = [1] + list(vectors.shape)[1:]
+    Jx = np.tile(res_xprime,tile_shape)
+    Jy = np.tile(res_yprime,tile_shape)
+    Jz = np.tile(res_zprime,tile_shape)
+
+    rhat = Jx*np.sin(theta)*np.cos(phi) + \
+           Jy*np.sin(theta)*np.sin(phi) + \
+           Jz*np.cos(theta)
+
+    return np.sum(vectors*rhat, axis=0)
+
+def get_sph_phi_component(vectors, phi, normal):
+    # The phi component of a vector is the vector dotted with phihat
+
+    (xprime, yprime, zprime) = get_ortho_basis(normal)
+
+    res_xprime = resize_vector(xprime, vectors)
+    res_yprime = resize_vector(yprime, vectors)
+
+    tile_shape = [1] + list(vectors.shape)[1:]
+    Jx = np.tile(res_xprime,tile_shape)
+    Jy = np.tile(res_yprime,tile_shape)
+
+    phihat = -Jx*np.sin(phi) + Jy*np.cos(phi)
+
+    return np.sum(vectors*phihat, axis=0)
+
+def get_sph_theta_component(vectors, theta, phi, normal):
+    # The theta component of a vector is the vector dotted with thetahat
+    
+    (xprime, yprime, zprime) = get_ortho_basis(normal)
+
+    res_xprime = resize_vector(xprime, vectors)
+    res_yprime = resize_vector(yprime, vectors)
+    res_zprime = resize_vector(zprime, vectors)
+
+    tile_shape = [1] + list(vectors.shape)[1:]
+    Jx = np.tile(res_xprime,tile_shape)
+    Jy = np.tile(res_yprime,tile_shape)
+    Jz = np.tile(res_zprime,tile_shape)
+    
+    thetahat = Jx*np.cos(theta)*np.cos(phi) + \
+               Jy*np.cos(theta)*np.sin(phi) - \
+               Jz*np.sin(theta)
+
+    return np.sum(vectors*thetahat, axis=0)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/tests/test_coordinate_conversions.py
--- /dev/null
+++ b/yt/utilities/tests/test_coordinate_conversions.py
@@ -0,0 +1,125 @@
+from yt.testing import *
+from yt.utilities.math_utils import \
+    get_sph_r_component, \
+    get_sph_theta_component, \
+    get_sph_phi_component, \
+    get_cyl_r_component, \
+    get_cyl_z_component, \
+    get_cyl_theta_component, \
+    get_cyl_r, get_cyl_theta, \
+    get_cyl_z, get_sph_r, \
+    get_sph_theta, get_sph_phi
+
+# Randomly generated coordinates in the domain [[-1,1],[-1,1],-1,1]]
+coords = np.array([[-0.41503037, -0.22102472, -0.55774212],
+                   [ 0.73828247, -0.17913899,  0.64076921],
+                   [ 0.08922066, -0.94254844, -0.61774511],
+                   [ 0.10173242, -0.95789145,  0.16294352],
+                   [ 0.73186508, -0.3109153 ,  0.75728738],
+                   [ 0.8757989 , -0.41475119, -0.57039201],
+                   [ 0.58040762,  0.81969082,  0.46759728],
+                   [-0.89983356, -0.9853683 , -0.38355343]]).T
+
+def test_spherical_coordinate_conversion():
+    normal = [0, 0, 1]
+    real_r =     [ 0.72950559,  0.99384957,  1.13047198,  0.97696269,  
+                   1.09807968,  1.12445067,  1.10788685,  1.38843954]
+    real_theta = [ 2.44113629,  0.87012028,  2.14891444,  1.4032274 ,  
+                   0.80979483,  2.10280198,  1.13507735,  1.85068416]
+    real_phi =   [-2.65224483, -0.23804243, -1.47641858, -1.46498842, 
+                  -0.40172325, -0.4422801 ,  0.95466734, -2.31085392]
+
+    calc_r = get_sph_r(coords)
+    calc_theta = get_sph_theta(coords, normal)
+    calc_phi = get_sph_phi(coords, normal)
+
+    assert_array_almost_equal(calc_r, real_r)
+    assert_array_almost_equal(calc_theta, real_theta)
+    assert_array_almost_equal(calc_phi, real_phi)
+
+    normal = [1, 0, 0]
+    real_theta = [ 2.17598842,  0.73347681,  1.49179079,  1.46647589,  
+                   0.8412984 ,  0.67793705,  1.0193883 ,  2.27586987]
+    real_phi =   [-0.37729951, -2.86898397, -0.99063518, -1.73928995, 
+                   -2.75201227,-0.62870527,  2.08920872, -1.19959244]
+
+    calc_theta = get_sph_theta(coords, normal)
+    calc_phi = get_sph_phi(coords, normal)
+    
+    assert_array_almost_equal(calc_theta, real_theta)
+    assert_array_almost_equal(calc_phi, real_phi)
+
+def test_cylindrical_coordiante_conversion():
+    normal = [0, 0, 1]
+    real_r =     [ 0.47021498,  0.75970506,  0.94676179,  0.96327853,  
+                   0.79516968,  0.96904193,  1.00437346,  1.3344104 ]    
+    real_theta = [-2.65224483, -0.23804243, -1.47641858, -1.46498842, 
+                  -0.40172325, -0.4422801 ,  0.95466734, -2.31085392]
+    real_z =     [-0.55774212,  0.64076921, -0.61774511,  0.16294352,
+                   0.75728738, -0.57039201,  0.46759728, -0.38355343]
+
+    calc_r = get_cyl_r(coords, normal)
+    calc_theta = get_cyl_theta(coords, normal)
+    calc_z = get_cyl_z(coords, normal)
+
+    assert_array_almost_equal(calc_r, real_r)
+    assert_array_almost_equal(calc_theta, real_theta)
+    assert_array_almost_equal(calc_z, real_z)
+
+    normal = [1, 0, 0]
+    real_r =     [ 0.59994016,  0.66533898,  1.12694569,  0.97165149,
+                   0.81862843,  0.70524152,  0.94368441,  1.05738542]
+    real_theta = [-0.37729951, -2.86898397, -0.99063518, -1.73928995, 
+                  -2.75201227, -0.62870527,  2.08920872, -1.19959244]
+    real_z =     [-0.41503037,  0.73828247,  0.08922066,  0.10173242,
+                   0.73186508,  0.8757989 ,  0.58040762, -0.89983356]
+
+    calc_r = get_cyl_r(coords, normal)
+    calc_theta = get_cyl_theta(coords, normal)
+    calc_z = get_cyl_z(coords, normal)
+
+    assert_array_almost_equal(calc_r, real_r)
+    assert_array_almost_equal(calc_theta, real_theta)
+    assert_array_almost_equal(calc_z, real_z)
+
+def test_spherical_coordinate_projections():
+    normal = [0, 0, 1]
+    theta = get_sph_theta(coords, normal)
+    phi = get_sph_phi(coords, normal)
+    zero = np.tile(0,coords.shape[1])
+
+    # Purely radial field
+    vecs = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)])
+    assert_array_almost_equal(zero, get_sph_theta_component(vecs, theta, phi, normal))
+    assert_array_almost_equal(zero, get_sph_phi_component(vecs, phi, normal))
+
+    # Purely toroidal field
+    vecs = np.array([-np.sin(phi), np.cos(phi), zero])
+    assert_array_almost_equal(zero, get_sph_theta_component(vecs, theta, phi, normal))
+    assert_array_almost_equal(zero, get_sph_r_component(vecs, theta, phi, normal))
+
+    # Purely poloidal field
+    vecs = np.array([np.cos(theta)*np.cos(phi), np.cos(theta)*np.sin(phi), -np.sin(theta)])
+    assert_array_almost_equal(zero, get_sph_phi_component(vecs, phi, normal))
+    assert_array_almost_equal(zero, get_sph_r_component(vecs, theta, phi, normal))
+
+def test_cylindrical_coordinate_projections():
+    normal = [0, 0, 1]
+    theta = get_cyl_theta(coords, normal)
+    z = get_cyl_z(coords, normal)
+    zero = np.tile(0, coords.shape[1])
+
+    # Purely radial field
+    vecs = np.array([np.cos(theta), np.sin(theta), zero])
+    assert_array_almost_equal(zero, get_cyl_theta_component(vecs, theta, normal))
+    assert_array_almost_equal(zero, get_cyl_z_component(vecs, normal))
+
+    # Purely toroidal field
+    vecs = np.array([-np.sin(theta), np.cos(theta), zero])
+    assert_array_almost_equal(zero, get_cyl_z_component(vecs, normal))
+    assert_array_almost_equal(zero, get_cyl_r_component(vecs, theta, normal))
+
+    # Purely z field
+    vecs = np.array([zero, zero, z])
+    assert_array_almost_equal(zero, get_cyl_theta_component(vecs, theta, normal))
+    assert_array_almost_equal(zero, get_cyl_r_component(vecs, theta, normal))


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/tests/test_decompose.py
--- /dev/null
+++ b/yt/utilities/tests/test_decompose.py
@@ -0,0 +1,96 @@
+"""
+Test suite for cartesian domain decomposition.
+
+Author: Kacper Kowalik <xarthisius.kk at gmail.com>
+Affiliation: CA UMK
+Homepage: http://yt-project.org/
+License:
+  Copyright (C) 2012 Kacper Kowalik. All Rights Reserved.
+
+  This file is part of yt.
+
+  yt is free software; you can redistribute it and/or modify
+  it under the terms of the GNU General Public License as published by
+  the Free Software Foundation; either version 3 of the License, or
+  (at your option) any later version.
+
+  This program is distributed in the hope that it will be useful,
+  but WITHOUT ANY WARRANTY; without even the implied warranty of
+  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  GNU General Public License for more details.
+
+  You should have received a copy of the GNU General Public License
+  along with this program.  If not, see <http://www.gnu.org/licenses/>.
+"""
+
+from yt.testing import assert_array_equal, assert_almost_equal
+import numpy as np
+import yt.utilities.decompose as dec
+
+
+def setup():
+    pass
+
+
+def test_psize_2d():
+    procs = dec.get_psize(np.array([5, 1, 7]), 6)
+    assert_array_equal(procs, np.array([3, 1, 2]))
+    procs = dec.get_psize(np.array([1, 7, 5]), 6)
+    assert_array_equal(procs, np.array([1, 2, 3]))
+    procs = dec.get_psize(np.array([7, 5, 1]), 6)
+    assert_array_equal(procs, np.array([2, 3, 1]))
+
+
+def test_psize_3d():
+    procs = dec.get_psize(np.array([33, 35, 37]), 12)
+    assert_array_equal(procs, np.array([3, 2, 2]))
+
+
+def test_decomposition_2d():
+    array = np.ones((7, 5, 1))
+    bbox = np.array([[-0.7, 0.0], [1.5, 2.0], [0.0, 0.7]])
+    ledge, redge, data = dec.decompose_array(array, np.array([2, 3, 1]), bbox)
+
+    assert_array_equal(data[1].shape, np.array([3, 2, 1]))
+
+    gold_le = np.array([
+                       [-0.7, 1.5, 0.0], [-0.7, 1.6, 0.0],
+                       [-0.7, 1.8, 0.0], [-0.4, 1.5, 0.0],
+                       [-0.4, 1.6, 0.0], [-0.4, 1.8, 0.0]
+                       ])
+    assert_almost_equal(ledge, gold_le, 8)
+
+    gold_re = np.array(
+        [[-0.4, 1.6, 0.7], [-0.4, 1.8, 0.7],
+         [-0.4, 2.0, 0.7], [0.0, 1.6, 0.7],
+         [0.0, 1.8, 0.7], [0.0, 2.0, 0.7]]
+    )
+    assert_almost_equal(redge, gold_re, 8)
+
+
+def test_decomposition_3d():
+    array = np.ones((33, 35, 37))
+    bbox = np.array([[0., 1.0], [-1.5, 1.5], [1.0, 2.5]])
+
+    ledge, redge, data = dec.decompose_array(array, np.array([3, 2, 2]), bbox)
+    assert_array_equal(data[0].shape, np.array([11, 17, 18]))
+
+    gold_le = np.array(
+        [[0.00000, -1.50000, 1.00000], [0.00000, -1.50000, 1.72973],
+         [0.00000, -0.04286, 1.00000], [0.00000, -0.04286, 1.72973],
+         [0.33333, -1.50000, 1.00000], [0.33333, -1.50000, 1.72973],
+         [0.33333, -0.04286, 1.00000], [0.33333, -0.04286, 1.72973],
+         [0.66667, -1.50000, 1.00000], [0.66667, -1.50000, 1.72973],
+         [0.66667, -0.04286, 1.00000], [0.66667, -0.04286, 1.72973]]
+    )
+    assert_almost_equal(ledge, gold_le, 5)
+
+    gold_re = np.array(
+        [[0.33333, -0.04286, 1.72973], [0.33333, -0.04286, 2.50000],
+         [0.33333, 1.50000, 1.72973], [0.33333, 1.50000, 2.50000],
+         [0.66667, -0.04286, 1.72973], [0.66667, -0.04286, 2.50000],
+         [0.66667, 1.50000, 1.72973], [0.66667, 1.50000, 2.50000],
+         [1.00000, -0.04286, 1.72973], [1.00000, -0.04286, 2.50000],
+         [1.00000, 1.50000, 1.72973], [1.00000, 1.50000, 2.50000]]
+    )
+    assert_almost_equal(redge, gold_re, 5)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/utilities/tests/test_kdtrees.py
--- a/yt/utilities/tests/test_kdtrees.py
+++ b/yt/utilities/tests/test_kdtrees.py
@@ -26,10 +26,7 @@
 from yt.testing import *
 
 try:
-    from yt.utilities.kdtree import \
-        chainHOP_tags_dens, \
-        create_tree, fKD, find_nn_nearest_neighbors, \
-        free_tree, find_chunk_nearest_neighbors
+    from yt.utilities.kdtree.api import *
 except ImportError:
     mylog.debug("The Fortran kD-Tree did not import correctly.")
 
@@ -39,10 +36,14 @@
     pass
 
 def test_fortran_tree():
-    # This test makes sure that the fortran kdtree is finding the correct
-    # nearest neighbors.
+    r"""This test makes sure that the fortran kdtree is finding the correct
+    nearest neighbors.
+    """
     # Four points.
-    fKD.pos = np.empty((3, 4), dtype='float64', order='F')
+    try:
+        fKD.pos = np.empty((3, 4), dtype='float64', order='F')
+    except NameError:
+        return
     # Make four points by hand that, in particular, will allow us to test
     # the periodicity of the kdtree.
     points = np.array([0.01, 0.5, 0.98, 0.99])
@@ -70,8 +71,9 @@
     assert_array_equal(fKD.tags, tags)
 
 def test_cython_tree():
-    # This test makes sure that the cython kdtree is finding the correct
-    # nearest neighbors.
+    r"""This test makes sure that the cython kdtree is finding the correct
+    nearest neighbors.
+    """
     # Four points.
     pos = np.empty((4, 3), dtype='float64')
     # Make four points by hand that, in particular, will allow us to test


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/visualization/plot_modifications.py
--- a/yt/visualization/plot_modifications.py
+++ b/yt/visualization/plot_modifications.py
@@ -213,7 +213,7 @@
 class ContourCallback(PlotCallback):
     _type_name = "contour"
     def __init__(self, field, ncont=5, factor=4, clim=None,
-                 plot_args = None):
+                 plot_args = None, label = False, label_args = None):
         """
         annotate_contour(self, field, ncont=5, factor=4, take_log=False, clim=None,
                          plot_args = None):
@@ -232,6 +232,10 @@
         self.clim = clim
         if plot_args is None: plot_args = {'colors':'k'}
         self.plot_args = plot_args
+        self.label = label
+        if label_args is None:
+            label_args = {}
+        self.label_args = label_args
 
     def __call__(self, plot):
         x0, x1 = plot.xlim
@@ -292,10 +296,14 @@
         if self.clim is not None: 
             self.ncont = np.linspace(self.clim[0], self.clim[1], ncont)
         
-        plot._axes.contour(xi,yi,zi,self.ncont, **self.plot_args)
+        cset = plot._axes.contour(xi,yi,zi,self.ncont, **self.plot_args)
         plot._axes.set_xlim(xx0,xx1)
         plot._axes.set_ylim(yy0,yy1)
         plot._axes.hold(False)
+        
+        if self.label:
+            plot._axes.clabel(cset, **self.label_args)
+        
 
 class GridBoundaryCallback(PlotCallback):
     _type_name = "grids"
@@ -366,39 +374,30 @@
 
 class StreamlineCallback(PlotCallback):
     _type_name = "streamlines"
-    def __init__(self, field_x, field_y, factor=6.0, nx=16, ny=16,
-                 xstart=(0,1), ystart=(0,1), nsample=256,
-                 start_at_xedge=False, start_at_yedge=False,
-                 plot_args=None):
+    def __init__(self, field_x, field_y, factor = 16,
+                 density = 1, arrowsize = 1, arrowstyle = None,
+                 color = None, normalize = False):
         """
-        annotate_streamlines(field_x, field_y, factor=6.0, nx=16, ny=16,
-                             xstart=(0,1), ystart=(0,1), nsample=256,
-                             start_at_xedge=False, start_at_yedge=False,
-                             plot_args=None):
+        annotate_streamlines(field_x, field_y, factor = 16, density = 1,
+                             arrowsize = 1, arrowstyle = None,
+                             color = None, normalize = False):
 
         Add streamlines to any plot, using the *field_x* and *field_y*
-        from the associated data, using *nx* and *ny* starting points
-        that are bounded by *xstart* and *ystart*.  To begin
-        streamlines from the left edge of the plot, set
-        *start_at_xedge* to True; for the bottom edge, use
-        *start_at_yedge*.  A line with the qmean vector magnitude will
-        cover 1.0/*factor* of the image.
+        from the associated data, skipping every *factor* datapoints like
+        'quiver'. *density* is the index of the amount of the streamlines.
         """
         PlotCallback.__init__(self)
         self.field_x = field_x
         self.field_y = field_y
-        self.xstart = xstart
-        self.ystart = ystart
-        self.nsample = nsample
+        self.bv_x = self.bv_y = 0
         self.factor = factor
-        if start_at_xedge:
-            self.data_size = (1,ny)
-        elif start_at_yedge:
-            self.data_size = (nx,1)
-        else:
-            self.data_size = (nx,ny)
-        if plot_args is None: plot_args = {'color':'k', 'linestyle':'-'}
-        self.plot_args = plot_args
+        self.dens = density
+        self.arrowsize = arrowsize
+        if arrowstyle is None : arrowstyle='-|>'
+        self.arrowstyle = arrowstyle
+        if color is None : color = "#000000"
+        self.color = color
+        self.normalize = normalize
         
     def __call__(self, plot):
         x0, x1 = plot.xlim
@@ -406,43 +405,31 @@
         xx0, xx1 = plot._axes.get_xlim()
         yy0, yy1 = plot._axes.get_ylim()
         plot._axes.hold(True)
-        nx = plot.image._A.shape[0]
-        ny = plot.image._A.shape[1]
+        nx = plot.image._A.shape[0] / self.factor
+        ny = plot.image._A.shape[1] / self.factor
         pixX = _MPL.Pixelize(plot.data['px'],
                              plot.data['py'],
                              plot.data['pdx'],
                              plot.data['pdy'],
-                             plot.data[self.field_x],
+                             plot.data[self.field_x] - self.bv_x,
                              int(nx), int(ny),
-                           (x0, x1, y0, y1),)
+                           (x0, x1, y0, y1),).transpose()
         pixY = _MPL.Pixelize(plot.data['px'],
                              plot.data['py'],
                              plot.data['pdx'],
                              plot.data['pdy'],
-                             plot.data[self.field_y],
+                             plot.data[self.field_y] - self.bv_y,
                              int(nx), int(ny),
-                           (x0, x1, y0, y1),)
-        r0 = np.mgrid[self.xstart[0]*nx:self.xstart[1]*nx:self.data_size[0]*1j,
-                      self.ystart[0]*ny:self.ystart[1]*ny:self.data_size[1]*1j]
-        lines = np.zeros((self.nsample, 2, self.data_size[0], self.data_size[1]))
-        lines[0,:,:,:] = r0
-        mag = np.sqrt(pixX**2 + pixY**2)
-        scale = np.sqrt(nx*ny) / (self.factor * mag.mean())
-        dt = 1.0 / (self.nsample-1)
-        for i in range(1,self.nsample):
-            xt = lines[i-1,0,:,:]
-            yt = lines[i-1,1,:,:]
-            ix = np.maximum(np.minimum((xt).astype('int'), nx-1), 0)
-            iy = np.maximum(np.minimum((yt).astype('int'), ny-1), 0)
-            lines[i,0,:,:] = xt + dt * pixX[ix,iy] * scale
-            lines[i,1,:,:] = yt + dt * pixY[ix,iy] * scale
-        # scale into data units
-        lines[:,0,:,:] = lines[:,0,:,:] * (xx1 - xx0) / nx + xx0
-        lines[:,1,:,:] = lines[:,1,:,:] * (yy1 - yy0) / ny + yy0
-        for i in range(self.data_size[0]):
-            for j in range(self.data_size[1]):
-                plot._axes.plot(lines[:,0,i,j], lines[:,1,i,j],
-                                **self.plot_args)
+                           (x0, x1, y0, y1),).transpose()
+        X,Y = (na.linspace(xx0,xx1,nx,endpoint=True),
+                          na.linspace(yy0,yy1,ny,endpoint=True))
+        if self.normalize:
+            nn = na.sqrt(pixX**2 + pixY**2)
+            pixX /= nn
+            pixY /= nn
+        plot._axes.streamplot(X,Y, pixX, pixY, density=self.dens,
+                              arrowsize=self.arrowsize, arrowstyle=self.arrowstyle,
+                              color=self.color, norm=self.normalize)
         plot._axes.set_xlim(xx0,xx1)
         plot._axes.set_ylim(yy0,yy1)
         plot._axes.hold(False)


diff -r 814a93ee320766d02a677b07a441cbc3dcc660a5 -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 yt/visualization/streamlines.py
--- a/yt/visualization/streamlines.py
+++ b/yt/visualization/streamlines.py
@@ -146,7 +146,8 @@
     @parallel_passthrough
     def _finalize_parallel(self,data):
         self.streamlines = self.comm.mpi_allreduce(self.streamlines, op='sum')
-        self.magnitudes = self.comm.mpi_allreduce(self.magnitudes, op='sum')
+        if self.get_magnitude:
+            self.magnitudes = self.comm.mpi_allreduce(self.magnitudes, op='sum')
         
     def _integrate_through_brick(self, node, stream, step,
                                  periodic=False, mag=None):



https://bitbucket.org/yt_analysis/yt/changeset/c88a92f30151/
changeset:   c88a92f30151
branch:      yt
user:        scopatz
date:        2012-10-23 21:55:26
summary:     bugfix for contour annotations.
affected #:  1 file

diff -r df3c48e34cc922e10cf3d1ed4b95bc126b70d193 -r c88a92f30151a943cd52feebdcf5485fda5ed3fa yt/visualization/plot_modifications.py
--- a/yt/visualization/plot_modifications.py
+++ b/yt/visualization/plot_modifications.py
@@ -294,7 +294,7 @@
             self.clim = (np.log10(self.clim[0]), np.log10(self.clim[1]))
         
         if self.clim is not None: 
-            self.ncont = np.linspace(self.clim[0], self.clim[1], ncont)
+            self.ncont = np.linspace(self.clim[0], self.clim[1], self.ncont)
         
         cset = plot._axes.contour(xi,yi,zi,self.ncont, **self.plot_args)
         plot._axes.set_xlim(xx0,xx1)



https://bitbucket.org/yt_analysis/yt/changeset/6f48556cbe09/
changeset:   6f48556cbe09
branch:      yt
user:        scopatz
date:        2012-10-23 23:20:47
summary:     fixed yt/testing.py issue.
affected #:  1 file

diff -r c88a92f30151a943cd52feebdcf5485fda5ed3fa -r 6f48556cbe09a22d1d200de4b36985d660441f18 yt/testing.py
--- a/yt/testing.py
+++ b/yt/testing.py
@@ -24,10 +24,12 @@
 
 import numpy as np
 from yt.funcs import *
-from numpy.testing import assert_array_equal, assert_equal, assert_almost_equal
+from numpy.testing import assert_array_equal, assert_almost_equal, \
+    assert_approx_equal, assert_array_almost_equal, assert_equal, \
+    assert_array_less, assert_string_equal, assert_array_almost_equal_nulp
 
-def assert_rel_equal(a1, a2, decimels):
-    return assert_almost_equal(a1/a2, 1.0, decimels)
+def assert_rel_equal(a1, a2, decimals):
+    return assert_almost_equal(a1/a2, 1.0, decimals)
 
 def amrspace(extent, levels=7, cells=8):
     """Creates two numpy arrays representing the left and right bounds of 
@@ -137,11 +139,16 @@
         ndims = [ndims, ndims, ndims]
     else:
         assert(len(ndims) == 3)
-    if negative:
-        offset = 0.5
-    else:
-        offset = 0.0
+    if not iterable(negative):
+        negative = [negative for f in fields]
+    assert(len(fields) == len(negative))
+    offsets = []
+    for n in negative:
+        if n:
+            offsets.append(0.5)
+        else:
+            offsets.append(0.0)
     data = dict((field, (np.random.random(ndims) - offset) * peak_value)
-                 for field in fields)
+                 for field,offset in zip(fields,offsets))
     ug = load_uniform_grid(data, ndims, 1.0, nprocs = nprocs)
     return ug



https://bitbucket.org/yt_analysis/yt/changeset/5f5bfa8f287f/
changeset:   5f5bfa8f287f
branch:      yt
user:        scopatz
date:        2012-10-24 02:52:54
summary:     rm TimeCallback under Nathan's suggestion.
affected #:  1 file

diff -r 6f48556cbe09a22d1d200de4b36985d660441f18 -r 5f5bfa8f287f61321911b9e3ee2727aa692d89a8 yt/visualization/plot_modifications.py
--- a/yt/visualization/plot_modifications.py
+++ b/yt/visualization/plot_modifications.py
@@ -450,30 +450,6 @@
         plot._axes.set_xlabel(self.label)
         plot._axes.set_ylabel(self.label)
 
-class TimeCallback(PlotCallback):
-    _type_name = "time"
-    def __init__(self, format_code='10.7e'):
-        """
-        This annotates the plot with the current simulation time.
-        For now, the time is displayed in seconds.
-        *format_code* can be optionally set, allowing a custom 
-        c-style format code for the time display.
-        """
-        self.format_code = format_code
-        PlotCallback.__init__(self)
-    
-    def __call__(self, plot):
-        current_time = plot.pf.current_time/plot.pf['Time']
-        timestring = format(current_time,self.format_code)
-        base = timestring[:timestring.find('e')]
-        exponent = timestring[timestring.find('e')+1:]
-        if exponent[0] == '+':
-            exponent = exponent[1:]
-        timestring = r'$t\/=\/'+base+''+r'\times\,10^{'+exponent+r'}\, \rm{s}$'
-        from mpl_toolkits.axes_grid1.anchored_artists import AnchoredText
-        at = AnchoredText(timestring, prop=dict(size=12), frameon=True, loc=4)
-        plot._axes.add_artist(at)
-
 def get_smallest_appropriate_unit(v, pf):
     max_nu = 1e30
     good_u = None



https://bitbucket.org/yt_analysis/yt/changeset/981d0cf55bb1/
changeset:   981d0cf55bb1
branch:      yt
user:        MatthewTurk
date:        2012-10-24 13:45:20
summary:     Merged in scopatz/yt (pull request #313)
affected #:  2 files



diff -r 221b5163bffa2e478a2b65d80090adf1be45bb2e -r 981d0cf55bb18724b63a29decb21fbd8d5d4af67 yt/visualization/plot_modifications.py
--- a/yt/visualization/plot_modifications.py
+++ b/yt/visualization/plot_modifications.py
@@ -7,6 +7,8 @@
 Affiliation: UC Berkeley
 Author: Stephen Skory <s at skory.us>
 Affiliation: UC San Diego
+Author: Anthony Scopatz <scopatz at gmail.com>
+Affiliation: The University of Chicago
 Homepage: http://yt-project.org/
 License:
   Copyright (C) 2008-2011 Matthew Turk, JS Oishi, Stephen Skory.  All Rights Reserved.
@@ -292,7 +294,7 @@
             self.clim = (np.log10(self.clim[0]), np.log10(self.clim[1]))
         
         if self.clim is not None: 
-            self.ncont = np.linspace(self.clim[0], self.clim[1], ncont)
+            self.ncont = np.linspace(self.clim[0], self.clim[1], self.ncont)
         
         cset = plot._axes.contour(xi,yi,zi,self.ncont, **self.plot_args)
         plot._axes.set_xlim(xx0,xx1)
@@ -448,30 +450,6 @@
         plot._axes.set_xlabel(self.label)
         plot._axes.set_ylabel(self.label)
 
-class TimeCallback(PlotCallback):
-    _type_name = "time"
-    def __init__(self, format_code='10.7e'):
-        """
-        This annotates the plot with the current simulation time.
-        For now, the time is displayed in seconds.
-        *format_code* can be optionally set, allowing a custom 
-        c-style format code for the time display.
-        """
-        self.format_code = format_code
-        PlotCallback.__init__(self)
-    
-    def __call__(self, plot):
-        current_time = plot.pf.current_time/plot.pf['Time']
-        timestring = format(current_time,self.format_code)
-        base = timestring[:timestring.find('e')]
-        exponent = timestring[timestring.find('e')+1:]
-        if exponent[0] == '+':
-            exponent = exponent[1:]
-        timestring = r'$t\/=\/'+base+''+r'\times\,10^{'+exponent+r'}\, \rm{s}$'
-        from mpl_toolkits.axes_grid1.anchored_artists import AnchoredText
-        at = AnchoredText(timestring, prop=dict(size=12), frameon=True, loc=4)
-        plot._axes.add_artist(at)
-
 def get_smallest_appropriate_unit(v, pf):
     max_nu = 1e30
     good_u = None
@@ -1111,3 +1089,152 @@
     def __call__(self,plot):
         plot._axes.set_title(self.title)
 
+class FlashRayDataCallback(PlotCallback):
+    _type_name = "flash_ray_data"
+    def __init__(self, cmap_name='bone', sample=None):
+        """ 
+        annotate_flash_ray_data(cmap_name='bone', sample=None)
+
+        Adds ray trace data to the plot.  *cmap_name* is the name of the color map 
+        ('bone', 'jet', 'hot', etc).  *sample* dictates the amount of down sampling 
+        to do to prevent all of the rays from being  plotted.  This may be None 
+        (plot all rays, default), an integer (step size), or a slice object.
+        """
+        self.cmap_name = cmap_name
+        self.sample = sample if isinstance(sample, slice) else slice(None, None, sample)
+
+    def __call__(self, plot):
+        ray_data = plot.data.pf._handle["RayData"][:]
+        idx = ray_data[:,0].argsort(kind="mergesort")
+        ray_data = ray_data[idx]
+
+        tags = ray_data[:,0]
+        coords = ray_data[:,1:3]
+        power = ray_data[:,4]
+        power /= power.max()
+        cx, cy = self.convert_to_plot(plot, coords.T)
+        coords[:,0], coords[:,1] = cx, cy
+        splitidx = np.argwhere(0 < (tags[1:] - tags[:-1])) + 1
+        coords = np.split(coords, splitidx.flat)[self.sample]
+        power = np.split(power, splitidx.flat)[self.sample]
+        cmap = matplotlib.cm.get_cmap(self.cmap_name)
+
+        plot._axes.hold(True)
+        colors = [cmap(p.max()) for p in power]
+        lc = matplotlib.collections.LineCollection(coords, colors=colors)
+        plot._axes.add_collection(lc)
+        plot._axes.hold(False)
+
+
+class TimestampCallback(PlotCallback):
+    _type_name = "timestamp"
+    _time_conv = {
+          'as': 1e-18,
+          'attosec': 1e-18,
+          'attosecond': 1e-18,
+          'attoseconds': 1e-18,
+          'fs': 1e-15,
+          'femtosec': 1e-15,
+          'femtosecond': 1e-15,
+          'femtoseconds': 1e-15,
+          'ps': 1e-12,
+          'picosec': 1e-12,
+          'picosecond': 1e-12,
+          'picoseconds': 1e-12,
+          'ns': 1e-9,
+          'nanosec': 1e-9,
+          'nanosecond':1e-9,
+          'nanoseconds' : 1e-9,
+          'us': 1e-6,
+          'microsec': 1e-6,
+          'microsecond': 1e-6,
+          'microseconds': 1e-6,
+          'ms': 1e-3,
+          'millisec': 1e-3,
+          'millisecond': 1e-3,
+          'milliseconds': 1e-3,
+          's': 1.0,
+          'sec': 1.0,
+          'second':1.0,
+          'seconds': 1.0,
+          'm': 60.0,
+          'min': 60.0,
+          'minute': 60.0,
+          'minutes': 60.0,
+          'h': 3600.0,
+          'hour': 3600.0,
+          'hours': 3600.0,
+          'd': 86400.0,
+          'day': 86400.0,
+          'days': 86400.0,
+          'y': 86400.0*365.25,
+          'year': 86400.0*365.25,
+          'years': 86400.0*365.25,
+          'ev': 1e-9 * 7.6e-8 / 6.03,
+          'kev': 1e-12 * 7.6e-8 / 6.03,
+          'mev': 1e-15 * 7.6e-8 / 6.03,
+          }
+
+    def __init__(self, x, y, units=None, format="{time:.3G} {units}", **kwargs):
+        """ 
+        annotate_timestamp(x, y, units=None, format="{time:.3G} {units}", **kwargs)
+
+        Adds the current time to the plot at point given by *x* and *y*.  If *units* 
+        is given ('s', 'ms', 'ns', etc), it will covert the time to this basis.  If 
+        *units* is None, it will attempt to figure out the correct value by which to 
+        scale.  The *format* keyword is a template string that will be evaluated and 
+        displayed on the plot.  All other *kwargs* will be passed to the text() 
+        method on the plot axes.  See matplotlib's text() functions for more 
+        information.
+        """
+        self.x = x
+        self.y = y
+        self.format = format
+        self.units = units
+        self.kwargs = {'color': 'w'}
+        self.kwargs.update(kwargs)
+
+    def __call__(self, plot):
+        if self.units is None:
+            t = plot.data.pf.current_time
+            scale_keys = ['as', 'fs', 'ps', 'ns', 'us', 'ms', 's']
+            self.units = 's'
+            for k in scale_keys:
+                if t < self._time_conv[k]:
+                    break
+                self.units = k
+        t = plot.data.pf.current_time / self._time_conv[self.units.lower()]
+        if self.units == 'us':
+            self.units = '$\\mu s$'
+        s = self.format.format(time=t, units=self.units)
+        plot._axes.hold(True)
+        plot._axes.text(self.x, self.y, s, **self.kwargs)
+        plot._axes.hold(False)
+
+
+class MaterialBoundaryCallback(ContourCallback):
+    _type_name = "material_boundary"
+    def __init__(self, field='targ', ncont=1, factor=4, clim=(0.9, 1.0), **kwargs):
+        """ 
+        annotate_material_boundary(self, field='targ', ncont=1, factor=4, 
+                                   clim=(0.9, 1.0), **kwargs):
+
+        Add the limiting contours of *field* to the plot.  Nominally, *field* is 
+        the target material but may be any other field present in the hierarchy.
+        The number of contours generated is given by *ncount*, *factor* governs 
+        the number of points used in the interpolation, and *clim* gives the 
+        (upper, lower) limits for contouring.  For this to truly be the boundary
+        *clim* should be close to the edge.  For example the default is (0.9, 1.0)
+        for 'targ' which is defined on the range [0.0, 1.0].  All other *kwargs* 
+        will be passed to the contour() method on the plot axes.  See matplotlib
+        for more information.
+        """
+        plot_args = {'colors': 'w'}
+        plot_args.update(kwargs)
+        super(MaterialBoundaryCallback, self).__init__(field=field, ncont=ncont,
+                                                       factor=factor, clim=clim,
+                                                       plot_args=plot_args)
+
+    def __call__(self, plot):
+        super(MaterialBoundaryCallback, self).__call__(plot)
+

Repository URL: https://bitbucket.org/yt_analysis/yt/

--

This is a commit notification from bitbucket.org. You are receiving
this because you have the service enabled, addressing the recipient of
this email.



More information about the yt-svn mailing list